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A B S T R A C T

In the rapidly evolving landscape of digital competencies, the need for a robust and universal method to assess
students’ algorithmic thinking (AT) skills has become increasingly pronounced. Algorithmic thinking refers to
the ability to analyse a problem and develop a step-by-step process to solve it.

This research investigates the efficacy of the Cross Array Task (CAT) as an assessment tool for AT skills
within Switzerland’s compulsory education system. Originally conceptualised as an unplugged activity, where
students performed the task without digital technologies (e.g., by using gestures on paper) and an administrator
manually assessed them, the CAT evolved into a digital activity that runs on an iPad. The CAT’s digital
transformation has automated the scoring of student responses and data collection, streamlining the assessment
processes and facilitating efficient large-scale assessments. It has also enhanced scalability, making the CAT
suitable for widespread use in educational settings. Furthermore, it provides immediate feedback to students
and educators, supporting timely interventions and personalised learning experiences.

Our study aims to comprehensively investigate algorithmic competencies in compulsory education, examin-
ing their variations and influencing factors. This research examines key variables, such as age, sex, educational
environment and school characteristics (e.g., the level and grade of education), and regional factors (e.g., the
canton of the school) in Switzerland, and characteristics related to the specific assessment tool, including the
type of artefact used, the complexity of the algorithms generated, and the level of autonomy. Additionally, it
seeks to analyse the effectiveness of the unplugged and digital approaches in assessing AT skills, specifically
comparing the unplugged and virtual CAT versions, aiming to provide insights into their advantages and
potential synergies.

This investigation delineates the developmental progression of AT skills across compulsory education,
emphasising the influence of age on algorithm development and problem-solving strategies. Furthermore, we
reveal the impact of artefacts and the potential of digital tools to facilitate advanced AT skill development
across diverse age groups. Finally, our investigation delves into the influence of school environments and sex
disparities on AT performance, alongside the significant individual variability influenced by personal abilities
and external circumstances.

These findings underscore the importance of tailored educational interventions and equitable practices to
accommodate diverse learning profiles and optimise student outcomes in AT across educational settings.
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1. Introduction

Computational thinking (CT) has become an essential skill for stu-
dents in the 21st century, leading to increased efforts to integrate com-
puter science (CS) education into K-12 classrooms (Weintrop, Rutstein,
Bienkowski, & McGee, 2021). This initiative started with Jeannette
Wing’s introduction of the term CT, which she described as a funda-
mental skill for everyone, not just computer scientists (Wing, 2006).
Wing emphasised that CT involves problem-solving processes that draw
on concepts fundamental to computer science, such as abstraction,
decomposition, and algorithmic design.

Despite the growth in tools, activities, and curricula for teaching CT,
mainly due to the lack of a clear, universally accepted definition of CT,
which poses challenges for its integration into educational standards
and curricula (Piatti et al., 2022; Weintrop et al., 2021). For the pur-
poses of this article, we refer to Piatti’s definition of CT (Adorni et al.,
2024d; Piatti et al., 2022): ‘‘CT is the cognitive activity required to solve
problems through algorithms. CT involves three iterative steps: (1)
setting a contextualised problem so that its solution can be computed
(problem setting), (2) creating and representing an algorithm to be
implemented by an agent (human, artificial, and/or virtual) to solve the
problem (algorithm), and (3) assessing the solution’s quality relative to
the original problem (assessment)’’.

Within this broader context, there is a growing focus on algorithmic
thinking (AT), which is recognised as a crucial component of CT in ed-
ucation (Wing, 2006, 2014, 2017; Yadav, Mayfield, Zhou, Hambrusch,
& Korb, 2014). AT explicitly focus on the ability to design and express
solutions to problems in a step-by-step, systematic manner (Adorni
et al., 2024d). This focus on AT reflects its importance in developing
logical reasoning, problem-solving skills, and the ability to structure
and automate processes, which are essential in both computer science
and other fields.

As AT becomes an essential part of compulsory education, sys-
tematically evaluating students’ proficiency becomes necessary. This
assessment is crucial for educators to understand how well their teach-
ing methods and curriculum work in imparting AT skills. Secondly, it
helps track individual student progress and eventually provides person-
alised feedback that tailors instruction to meet each student’s diverse
needs.

Despite its importance, assessing AT presents inherent challenges
due to the lack of standardised tools and the diversity of evaluation
methods available. Researchers have highlighted various approaches,
including problem-solving activities, programming assignments, ques-
tion tests, and scale surveys, each with its considerations and limita-
tions (Adorni et al., 2024d; Ezeamuzie & Leung, 2021; Grover, 2017;
Pilotti, Nazeeruddin, Mohammad, Daqqa, Abdelsalam, & Abdullah,
2022; Scherer, Siddiq, & Viveros, 2019). Establishing a universally
accepted baseline for AT assessment remains challenging.

Our study is set within the context of Switzerland, a country with
a unique educational landscape characterised by its multilingual en-
vironment, encompassing four national languages: German, French,
Italian, and Romansh. This multilingualism influences various aspects
of education, including developing and implementing assessment tools.
Given this diversity, it is essential to design AT assessments that are
accessible and effective across different linguistic regions. Furthermore,
our focus spans across the spectrum of compulsory education, en-
compassing students from 3 to 16 years old. This broad age range
underscores the need for versatile assessment tools that accommodate
diverse developmental stages and educational contexts. In addressing
this multifaceted challenge, our study employs the Cross Array Task
(CAT) (Piatti et al., 2022), developed with multilingual capabilities,
which assesses AT in both unplugged (non-digital) and digital envi-
ronments, providing a comprehensive evaluation of students’ skills and
insights into the effectiveness of different instructional strategies.

To guide our investigation, we have formulated the following re-

search questions:
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Q1. What are the baseline competencies in AT in compulsory educa-
tion, and how do they develop across school grades?

Q2. How do characteristics specific to the assessment instrument, such
as different interaction modalities used in unplugged and digital
instructional strategies, influence the development of AT skills in
relation to sex, educational environment (e.g., school level and
grade), and regional factors (e.g., the canton of the school)?

By addressing these specific research questions, our study aims to
provide nuanced insights into AT skills development within compul-
sory education. While methodological considerations such as the need
for robust and universal assessment methods have been addressed in
previous literature (Adorni & Piatti, 2024c; Piatti et al., 2022), our
study aspires to provide practical guidance for educators, researchers,
and policymakers, fostering advancements in pedagogical approaches
tailored for AT assessment. Additionally, we seek to offer a compre-
hensive view of how students engage with and benefit from both
the unplugged CAT and the virtual CAT (the digital version), thereby
providing insights into the effectiveness of each method.

2. Theoretical background

In this section, we provide an overview of theoretical frameworks
related to algorithmic thinking (AT) assessment, empirical studies and
research findings, and a detailed description of the Cross Array Task
(CAT) assessment tool in both formats.

2.1. Foundations of algorithmic thinking

Early developmental psychologists such as Piaget and Vygotsky laid
foundational theories on cognitive development, emphasising the role
of active learning and social interactions in constructing knowledge
during the early stages of childhood development (Piaget, 1964; Piaget,
Cook, et al., 1952; Piaget & Mussen, 1983; Vygotsky, 1978). Piaget’s
constructivist theory posits that children build knowledge through
hands-on experiences and interactions with their environment, while
Vygotsky’s social constructivist theory adds that social interactions
and cultural context significantly influence learning outcomes. Both
theories support the idea that engaging students in problem-solving
and critical thinking activities, such as those involved in AT, can
significantly enhance cognitive development.

Modern research extends this framework, highlighting the impor-
tance of early experiences in STEM education, underscoring the role
of AT in cultivating skills crucial for future learning and proficient
problem-solving in today’s society (Georgiou & Angeli, 2021; Hsu,
Chang, & Hung, 2018; Jiang & Wong, 2022; Kanaki & Kalogiannakis,
2022; Nikolopoulou & Tsimperidis, 2023; Voronina, Sergeeva, & Utyu-
mova, 2016). The underlying belief is that by introducing AT con-
cepts early on, students not only become acquainted with technology
but also develop critical thinking, logical reasoning, and analytical
skills that have transferable applications across various domains (Bers,
Strawhacker, & Sullivan, 2022; Bocconi et al., 2022; Webb et al., 2017;
Weintrop et al., 2021).

2.2. Challenges in assessing algorithmic thinking

Assessing AT poses significant challenges due to the absence of
standardised tools and the diversity of evaluation methods available
(Adorni et al., 2024d; Ezeamuzie & Leung, 2021; Grover, 2017; Pilotti
et al., 2022; Scherer et al., 2019).

Empirical research has explored the effectiveness and challenges of
these various AT assessment methods. Traditional assessment methods
such as multiple-choice and closed-ended questions are widely used
for their efficiency in covering broad topics, the straightforward ad-
ministration and grading, but they may oversimplify the assessment
by focusing on rote memorisation rather than deeper problem-solving

skills (Campbell-Barr, Lavelle, & Wickett, 2012; Csernoch, Biró, Máth,
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& Abari, 2015; Oyelere, Agbo, & Sanusi, 2022; Simmering, Ou, &
Bolsinova, 2019; Wickey da Silva Garcia, Ronaldo Bezerr. Oliveira, &
da Costa Carvalho, 2022). Conversely, open-ended and problem-solving
tasks offer a more nuanced evaluation of algorithmic thinking by assess-
ing students’ reasoning and creativity, albeit at the cost of increased
grading complexity (Csernoch et al., 2015). Similarly, programming
assignments and coding challenges provide practical applications of
algorithmic skills but require intensive grading efforts to evaluate code
quality (Sun, Ouyang, Li, & Zhu, 2021). Robotic activities engage stu-
dents in real-world problem-solving, offering tangible and interactive
ways to assess AT and providing immediate feedback through interac-
tion with robots, but may be limited by access to equipment (Keith,
Sullivan, & Pham, 2019; McCormick & Hall, 2022). The best solution
appears to be automatic assessment systems, which can efficiently scale
to accommodate large numbers of participants and provide immediate
and consistent feedback, yet they are still developing in their ability
to comprehensively assess complex AT skills, especially in monitoring
learners’ progress over time (Qian & Lehman, 2018; Romero, Lepage,
& Lille, 2017; Stanja, Gritz, Krugel, Hoppe, & Dannemann, 2022).

2.3. Importance of comparing unplugged and digital approaches

The coexistence of unplugged and digital assessment methods fur-
ther complicates AT assessment. Unplugged methods, characterised by
their hands-on, non-digital nature, involve tangible activities to assess
fundamental CS concepts in an accessible and engaging manner (Adorni
et al., 2024d; Bell, Alexander, Freeman, & Grimley, 2009; Brackmann,
Romá’n-González, Robles, Moreno-León, Casali, & Barone, 2017; Del
Olmo-Muñoz, Cózar-Gutiérrez, & González-Calero, 2020; Piatti et al.,
2022). These methods involve physical activities and exercises that
teach CS principles without using computers. In contrast, digital meth-
ods utilise technological tools and software to engage students in
programming tasks and other computer-based activities to assess AT
skills within a digital context. These methods use software and digital
tools to engage students in programming and other computer-based
tasks.

Unplugged activities excel in building a strong foundation in compu-
tational principles, promoting clear concepts, and encouraging collabo-
rative learning, but they may lack exposure to digital problem-solving
and scalability for large-scale automatic assessments (Del Olmo-Muñoz
et al., 2020; El-Hamamsy, Zapata-Cáceres, Barroso, Mondada, Zufferey,
& Bruno, 2022; Piatti et al., 2022). On the other hand, while digital
methods offer flexibility, interactive, and individualised learning expe-
riences with immediate feedback, they may have limitations. Digital
methods might lack the tangible, hands-on engagement that unplugged
activities provide, potentially resulting in less accessible or engaging
learning experiences for certain learners (Piatti et al., 2022; Relkin,
de Ruiter, & Bers, 2020; Román-González, Pérez-González, & Jiménez-
Fernández, 2017; Zapata-Cáceres, Martín-Barroso, & Román-González,
2020). Additionally, their reliance on digital platforms could introduce
barriers for students with limited access to technology or those who
prefer non-digital learning environments (Bell & Vahrenhold, 2018;
Brackmann et al., 2017; Kalelioglu, Gulbahar, & Kukul, 2016; Relkin
et al., 2020). However, the scalability of digital methods remains ad-
vantageous for automatically collecting data in large-scale educational
assessments.

The comparison between unplugged and digital methods is crucial
for educators and researchers to identify which strategies are most
effective in different educational settings for assessing AT skills. This
analysis can guide the establishment of standardised evaluation criteria,
ensuring consistency and fairness in assessing students’ computational
competencies over time.

For this article, we adopt the Cross Array Task (CAT) as our as-
sessment instrument due to its versatility in exploring AT skills across
both non-digital and digital contexts, addressing the evolving needs

of modern education. The CAT incorporates an automatic assessment
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system in its digital format, enabling scalable and consistent evaluation
of students’ AT abilities. If both unplugged and digital methods are
found to be equally effective, it would validate the CAT as a reliable
assessment tool, demonstrating its effectiveness in both contexts.

Understanding the strengths and limitations of both approaches en-
ables educators to tailor their instructional methods to meet the diverse
learning needs and preferences of students, thereby enhancing edu-
cational outcomes. Establishing a universally accepted benchmark for
assessing AT skills is crucial for tracking progress and fostering contin-
uous improvement in computer science education. A standardised ap-
proach facilitates comparisons across various educational contexts and
supports evidence-based decision-making in curriculum development
and educational policy.

2.4. The CAT assessment instrument

The CAT is an educational activity designed to evaluate algorithmic
skills in students along the entire compulsory school (Piatti et al.,
2022). In this assessment, each student is assigned 12 tasks, each
requiring them to formulate a set of instructions known as an algorithm
(See Fig. A.1). The objective is to describe and replicate unique cross
arrays schema characterised by a pattern of 20 dots forming a 2-thick
cross, with colours selected from a set of options (typically yellow,
green, blue, or red) and featuring diverse regularities and patterns.

Fig. 1 depicts the activity experimental setting. Initially conceived
as an unplugged activity, the CAT involved face-to-face interaction
between the problem solver and a human agent. The pupil has at
his disposal two types of cognitive artefacts to communicate algo-
rithms: verbal instructions (V) or accompanying the voice with gestures
on an empty sample schema (VS). At the same time, the human
administrator manually interprets, replicates and records all pupil in-
structions. A physical barrier initially promoted pupil autonomy during
this interaction by concealing the administrator’s replication process.
Its removal provides direct visual feedback for the pupil, thus reducing
his autonomy level.

To streamline the assessment process, enabling large-scale assess-
ment, address the time-consuming nature of individual administra-
tion, and reduce inconsistencies in evaluations due to human involve-
ment, a digital version of this activity, called virtual CAT, was de-
veloped (Adorni & Piatti, 2024c; Adorni, Piatti, & Karpenko, 2024e).
This transition replaced the human administrator with a virtual agent,
transforming the interaction into a device-mediated process. The virtual
agent interprets instructions using a programming language interpreter,
automating algorithm recording and evaluation to provide immediate
feedback and guidance. Administration via individual devices such
as tablets enables simultaneous participation by multiple students,
enhancing accessibility and efficiency.

Cognitive artefacts evolved in a digital version, called virtual CAT,
replacing direct verbal (V) and gestural communication (VS) with a
visual programming interface (P), where users create algorithms by
arranging visual coding blocks via drag-and-drop (see Fig. A.2), and a
gesture-based interface (G) where users manipulate and colour the cross
directly by touching dots (see Fig. A.3). Both versions of the activity
support varying levels of student autonomy through the option for
students to request visual cues on their colouring progress. The digital
format also introduces enhancements like task skipping or restarting,
further optimising the task experience.

To accommodate Switzerland’s multilingual context, the virtual CAT
included support for multiple languages – Italian, French, and German
– thus ensuring broader accessibility for users of different native lan-
guages and facilitating adoption across various educational institutions.
An English version is also available to extend the application’s utility

to a broader audience.
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Fig. 1. Experimental setting of the CAT.
Source: Adapted from Adorni and Piatti
(2024c), Piatti et al. (2022).
2.4.1. Algorithmic skills assessment
The CAT assessment instrument evaluates students’ algorithmic

skills through a structured approach that assesses both the complex-
ity of algorithms generated and their efficiency in design. Here, we
provide a detailed exploration of how the CAT measures algorithmic
proficiency, from basic operations to more advanced patterns, and in-
troduce the adjusted algorithm dimension metric to enhance evaluation
accuracy.

Algorithm dimension. The algorithm dimension serves as an indicator
of the complexity of algorithms generated by students during the CAT
assessment. Each operation within the algorithm is evaluated based
on its level of complexity, which ranges across three distinct levels.
These levels signify increasing degrees of algorithmic sophistication,
with higher scores indicating greater proficiency and the ability to
handle more intricate tasks effectively.
0D: this level entails colouring individual dots within the cross;
1D: this level entails colouring multiple dots with the same colour,

following patterns such as rows or diagonals;
2D: this level entails creating more complex patterns involving

alternating colours, repetitions of patterns, and other intricate
arrangements.

The score range from 0 for the first level (0D) to 2 for the most
complex level (2D). The overall algorithm dimension is determined
by the most complex operation successfully performed by the student
during the assessment. A higher algorithm dimension not only indicates
greater proficiency but also implies the ability to handle both complex
and simpler operations effectively, reflecting the student’s depth of
understanding in algorithmic thinking and problem-solving

Adjusted algorithm dimension. Acknowledging the need to assess algo-
rithm efficiency alongside complexity, we have introduced an adapted
metric that considers the number of commands used, providing a more
nuanced evaluation of students’ algorithmic competencies. It recognises
cases where a simpler yet more efficient algorithm may perform better
than a complex one with more commands. The adjusted score, de-
noted as ÃD, is calculated using a formula that balances the highest
4 
complexity level achieved by the student against the overall workload:

ÃD =
1 + 𝑃max-𝑑 +

∑

𝑑
(

𝐶𝑑 ⋅ 𝑃𝑑
)

𝐶total
, (1)

where, 𝑑 is the complexity level of the algorithm (i.e., 0, 1, or 2);
𝑃max-𝑑 are the points assigned to the highest complexity level used
by the student, computed as the original algorithm dimension score
plus one; 𝐶𝑑 is the number of commands at complexity level 𝑑; 𝑃𝑑
are the points for the complexity level 𝑑, computed as the original
algorithm dimension score at that complexity level plus one; 𝐶total is the
overall number of commands used across all levels. The first term in the
formula (1) gives a score for the most complex algorithm achieved by
the student, adjusted for the total commands used, favouring higher-
level algorithms but considering the overall workload in terms of
the number of commands executed. The second term calculates a
weighted score for each complexity level, factoring in the proportion of
commands used at each complexity level relative to the total command
count and multiplying it by the points for that level.

2.4.2. Interaction dynamics assessment
The interaction dimension within the CAT assessment evaluates how

students engage with the assessment instrument, reflecting both the
complexity of the artefacts used and the level of autonomy demon-
strated during task execution, determined by the extent to which they
asked for visual cues and relied on visual feedback.

This dimension considers various modalities of interaction, whether
unplugged or virtual, each presenting distinct levels of complexity and
autonomy.

Interaction dimension (for the unplugged CAT). For activities conducted
without digital interfaces, the interaction dimension includes three
levels of complexity:
VSF: this level involves using voice commands and hand gestures

on an empty cross array, hinging on visual feedback;
VS: this level involves using voice commands and hand gestures

on an empty cross array, without hinging on visual feedback;
V: this level involves using only voice commands without hand

gestures on an empty cross array or visual feedback;
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Scores range from 0 for the simplest level of complexity (VSF) to 2 for
the highest level (V), based on the complexity of interaction observed
during the assessment.

Interaction dimension (for the virtual CAT). When tasks are conducted
through digital interfaces, the interaction dimension expands to four
levels of complexity:
GF: this level involves using the gesture interface, hinging on

visual feedback;
G: this level involves using the gesture interface, without hinging

on visual feedback;
PF: this level involves using the visual programming interface,

hinging on visual feedback;
P: this level involves using the visual programming interface,

without hinging on visual feedback;
Scores range from 0 for the simplest level of complexity (GF) to 3 for
the highest level (P), based on the complexity of interaction observed
during virtual assessments.

The interaction dimension complements the algorithm dimension by
providing a comprehensive view of students’ engagement preferences
and capabilities across different interaction modalities. While the al-
gorithm dimension focuses on the highest complexity level achieved,
for the interaction dimension we report the lowest complexity level
reached and the predominant interaction style used throughout the
assessment. This dual approach offers valuable insights into students’
interaction patterns, autonomy, adaptability, and proficiency in utilis-
ing various interaction methods during the assessment tasks. A higher
interaction dimension indicates a greater level of complexity in the
student’s interaction with the activity, suggesting that the student used
more complex artefacts or demonstrated a higher level of autonomy
during the task.

2.4.3. CAT competencies assessment
The CAT assessment evaluates students’ skills by measuring both

algorithmic complexity and interaction dynamics, combining these as-
pects into a single CAT score metric to provide a comprehensive
assessment of their performance. Table 1 illustrates how this met-
ric is computed, enabling us to assess task performance across both
unplugged and digital approaches. While algorithm dimensions are
directly comparable since they share the same levels between the two
approaches, interaction dimensions are not. Nonetheless, they provide
insights into the progression from lower to higher levels of interaction
complexity.

Table 1
CAT score metric to assess task performance. Rows represent algorithm dimensions,
while columns indicate interaction dimensions.
(a) Unplugged CAT. The
interaction dimensions correspond
to the use of voice and hand
gestures on an empty cross array,
hinging on visual feedback (VSF),
the use of voice and hand gestures
on an empty cross array without
visual feedback (VS), and the use
of voice alone without hand
gestures or visual feedback (V).

VSF VS V

0D 0 1 2
1D 1 2 3
2D 2 3 4

(b) Virtual CAT. The interaction
dimensions correspond to the use of
gesture interface hinging on visual
feedback (GF), the use of gesture
interface without hinging on visual
feedback (G), the use of visual
programming interface hinging on visual
feedback (PF), and the use of visual
programming interface without hinging
on visual feedback (P).

GF G PF P

0D 0 1 2 3
1D 1 2 3 4
2D 2 3 4 5

2.4.4. Task metrics
The CAT assessment instrument evaluates also various metrics to

gauge students’ proficiency in AT and task execution. Key metrics
assessed include:
5 
Participation rate. The participation rate measures whether students
attempted and concluded each task assigned during the CAT assess-
ment, regardless of correctness. Each student is assigned 12 tasks, and
the participation rate indicates how many of these tasks. This metric
provides an initial overview of students’ engagement and persistence
in the assessment activities.

Success rate. The success rate evaluates the number of tasks that stu-
dents correctly solved during the CAT assessment, irrespective of effi-
ciency or the number of attempts made.

Number of restarts. The number of restarts reflects students’ approach
to problem-solving, particularly their use of trial and error (T&E)
strategies. It counts instances where students choose to restart the tasks,
indicating their iterative approach to refining algorithms and achieving
desired outcomes.

Efficiency. Efficiency evaluates how effectively students complete tasks,
considering the time taken as factor.

2.4.5. Validity and reliability
The CAT was validated as an unplugged task in spring 2022 (Piatti

et al., 2022) and further tested in a digital format as virtual task during
a subsequent pilot phase in spring 2023 (Adorni & Piatti, 2024c).

Ensuring the validity and reliability of the CAT involved several
steps. Initially, the CAT was designed and assessed within the CT-cube
framework (Piatti et al., 2022), which extends traditional CT models
to include developmental and situational aspects of skills. The design
process for both versions prioritised usability by establishing clear
objectives and analysing requirements. Especially for the digital version
of the activity, prototypes were meticulously developed, focusing on
user experience and undergoing thorough testing, including expert
UX inspections. Children actively participated in the design process,
serving as both informants and evaluators. Their input ensured that the
CAT aligned with their needs, guaranteeing functionality, accessibility,
and engagement.

Practical test in real educational settings assessed both versions of
the CAT across diverse K-12 student populations, ensuring the activity
accommodated various age groups and backgrounds effectively. These
tests pinpointed areas for improvement and validated the platform’s
readiness for broader implementation. By observing pupils’ proficiency
in generating algorithms across various tasks and settings, evaluating
their ability to perform the task using all available artefacts, regardless
of age or background, by assessing their consistency in completing
provided schemas and measuring engagement and success rates, it was
confirmed that the instrument consistently elicited active participation
and yielded reliable outcomes. Observations included how students
approached and completed tasks, their diverse algorithmic strategies,
and the tool’s ability to yield consistent outcomes under different
conditions.

Factors affecting reliability, such as the length of the assessment,
the suitability of the tasks for the students being assessed, and the
consistency in test administration, were all considered and addressed
in both studies. Insights gained from these assessments were essential
in refining the CAT to better serve the varied needs of students and
educators.

These steps collectively affirmed the platform’s capability to deliver
valid and reliable assessments in educational contexts. Consequently,
the CAT can be recognised as a dependable tool for assessing AT skills.
Its consistent outcomes inspire confidence in making broad assertions
about students’ achievement levels across multiple assessments.

3. Methods

In this section, we outline the methodologies used to assess students’
algorithmic skills using the Cross Array Task (CAT) in both unplugged
and virtual formats. Our overview encompasses experimental settings,
data collection procedures, participant selection, and data analysis
methodologies.
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Table 2
Swiss compulsory education structure under the HarmoS Agreement. Detailed representation of the Swiss compulsory education system, correlating HarmoS grades (HGs) and
ages with stages in German-speaking (DE), French-speaking (FR), and Italian-speaking (IT) cantons. The layout showcases three key educational cycles: preschool (Kindergarten/Cycle
primaire 1/Scuola dell’infanzia), primary school (Primarschule/Cycle primaire 2/Scuola elementare), and lower secondary school (Sekundarstufe I/Cycle secondaire/Scuola media),
each mapped to specific grades and regions.

Harmos grade 0 1 2 3 4 5 6 7 8 9 10 11
Age 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15

DE - Kindergarten Primarschule Sekundarstufe I

FR - Cycle 1 (primaire) Cycle 2 (primaire) Cycle 3 (secondaire 1)

IT Scuola dell’infanzia Scuola elementare Scuola media
3.1. Experimental settings

For both the unplugged and virtual CAT studies, there were distinct
logistical arrangements and roles of administrators in guiding and
assisting students during the activities.

For the unplugged CAT, two pupils at a time were randomly selected
from the class and taken to a separate room to minimise interference
with the remaining students. The administrator provided initial instruc-
tions and assistance during the activity, such as suggesting simpler
methods when students encountered difficulties, like complementing
voice instructions with gestures or relying on visual feedback. The time
required to solve all the 12 schemas varied from a minimum of 10 min –
in the case of the older pupils – to a maximum time of 45 min – for the
younger ones. Approximately, the total time required to administrate
the CAT to all 109 has been 36 h.

For the virtual CAT, a training module was integrated into the
app to familiarise students with the assessment tool. Training sessions,
lasting about 30–45 min, were conducted in groups based on device
availability. Each student was provided with individual devices, allow-
ing the activity to be orchestrated for the entire class simultaneously
and seamlessly. During the actual validation phase, the administrator
refrained from providing help or tutoring.

3.2. Data collection

In the data collection process, we recorded various factors related
to the student, the educational environment, and the session context
that may influence students’ performance and competency develop-
ment in the context of assessing students’ algorithmic skills using
the CAT. These factors were considered across both unplugged and
virtual formats of the activity, referred to as domains. Understanding
them is crucial for interpreting the data and evaluating performance
comprehensively.

3.2.1. Factors affecting performance
Domain. We differentiate between the unplugged and digital formats
f the activity, recognising that each format involves different interac-
ion methods which can affect student performance and engagement.

anton. Given Switzerland’s linguistic diversity, we categorise students
ased on their respective geographic origin or the canton where they
ive (similar to federal states) to explore potential variations in AT
nfluenced by each unique linguistic region’s educational practices.

ducational context. To understand the educational context, we exam-
ne the combination of two key factors: sessions and HarmoS grades
HGs).

Sessions refer to distinct instances or implementations of the edu-
ational activity, each characterised by unique student compositions,
lass dynamics, and educational settings.

HGs, on the other hand, denote specific levels within Switzerland’s
ederalist education system, In particular, the HarmoS Agreement pro-
ides a standardised yet flexible structure for learning across linguistic

egions (Swiss Conference of Cantonal Ministers of Education, 2007;
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UNESCO Institute for Statistics, 2012). Table 2 provides an overview of
the Swiss compulsory education system, spanning eleven years (twelve
in Ticino), including preschool, primary, and lower secondary lev-
els, with variations tailored to the linguistic regions of Switzerland,
German, French, and Italian-speaking parts.

Specific school institutions. We account for the influence of specific
school institutions, aiming to understand variations in AT performance
across different schools and recognise the impact of institution-specific
dynamics.

Age category. We categorised students into four age groups, 3–6, 7–9,
10–13, and 14–16 years old, to understand how algorithmic capabilities
evolve across their entire compulsory education journey, similar to our
approach in the unplugged CAT experimentation (Piatti et al., 2022).

Sex. We delve into the influence of sex on students’ performance in
AT, recognising potential disparities and their implications.

3.2.2. Data collection process
During the data collection process, the administrator manually

recorded session and participant details in both studies. The same
session information was collected for contextualisation and analysis
purposes. Each session was assigned a unique identifier, and specific
details, such as the date, canton, school name and type, and the
students’ HarmoS grade (HG) level, were recorded. Student information
was limited to sex and date of birth, with birth dates used to calculate
ages, a significant factor in our demographic analysis. To protect
student privacy, unique identifiers were assigned to each participant,
keeping the data anonymous and secure.

In the unplugged CAT study, administrators manually recorded
activity and performance details, including operations performed, al-
gorithm complexity, and artefact type.

In the virtual CAT study, the application automatically tracked
activity information. It logged every action performed by the students,
including a complete record of the types of operations executed. These
actions ranged from basic tasks such as adding, confirming, or re-
moving commands to more complex actions like updating command
properties, resetting algorithms, and altering modes of interaction.
The application also tracked instances of tasks being completed or
abandoned, marking each with a timestamp and noting the specific
nature of the operation. This extensive logging process provided an in-
depth view of student engagement and interaction patterns with the
application.

All data collected in this study were pseudonymised, aligning with
prevailing open science practices in Switzerland (SNSF, 2021). This step
protected participants’ privacy while allowing the data to be accessible
and analysed within the academic community. Data from the un-
plugged study is not available online due to some constraints specified
in the original consent form but is securely stored on protected servers
and accessible only to researchers directly involved in the project. Data
from the virtual study has been made publicly accessible on the Zenodo
platform, with identifiable information like school names and class
details omitted to safeguard participant confidentiality while enabling

access to other scholars for further studies (Adorni, 2024a).
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Table 3
Demographic analysis of students in the unplugged and digital studies. Overview of student demographics by session, including canton, school ID and type, HarmoS grade
(HG), age category (mean age and standard deviation), and sex distribution (number of female and male students). Note that while Preschool A took part in both studies, the
pupils involved were not the same.

(a) Unplugged CAT.

Session Canton School ID & type HG Age category Female Male Total

1U Ticino A Preschool 0, 1, 2 3-6 yrs (𝜇 4.9 ± 0.9 yrs) 8 13 21
2U Ticino B Primary school 3 3-6 yrs (𝜇 6.7 ± 0.5 yrs) 4 8 12
3U Ticino B Primary school 5 7-9 yrs (𝜇 8.7 ± 0.6 yrs) 7 8 15
4U Ticino B Primary school 7 10-13 yrs (𝜇 10.5 ± 0.6 yrs) 8 11 19
5U Ticino C Lower secondary school 9 10-13 yrs (𝜇 12.5 ± 0.5 yrs) 8 7 15
6U Ticino C Lower secondary school 10 14-16 yrs (𝜇 13.0 ± 0.0 yrs) 5 2 7
7U Ticino C Lower secondary school 11 14-16 yrs (𝜇 14.5 ± 0.7 yrs) 9 5 14
8U Ticino C Lower secondary school 11 14-16 yrs (𝜇 14.5 ± 0.5 yrs) 2 4 6

(𝜇 9.9 ± 3.5 yrs) 51 58 109

(b) Virtual CAT.

Session Canton School ID & type HG Age category Female Male Total

1V Ticino A Preschool 0, 1, 2 3-6 yrs (𝜇 5.0 ± 0.8 yrs) 6 7 13
2V Solothurn D Preschool 2 3-6 yrs (𝜇 5.9 ± 0.3 yrs) 8 6 14
3V Ticino E Primary school 4 7-9 yrs (𝜇 7.7 ± 0.6 yrs) 7 8 15
4V Solothurn D Primary school 6 7-9 yrs (𝜇 9.9 ± 0.3 yrs) 8 10 18
5V Ticino F Lower secondary school 8 10-13 yrs (𝜇 11.6 ± 0.5 yrs) 11 9 20
6V Ticino F Lower secondary school 10 14-16 yrs (𝜇 13.9 ± 0.8 yrs) 8 5 13
7V Ticino G Lower secondary school 10 14-16 yrs (𝜇 13.6 ± 0.6 yrs) 7 7 14
8V Ticino G Lower secondary school 11 14-16 yrs (𝜇 14.7 ± 0.5 yrs) 6 5 11
9V Solothurn D Lower secondary school 11 14-16 yrs (𝜇 15.5 ± 0.5 yrs) 4 7 11

(𝜇 10.7 ± 3.6 yrs) 65 64 129
3.3. Participants selection

This study examines two distinct participant groups, each associated
with either the unplugged or digital approach. The first group, drawn
from the experimental study conducted between March and April 2021
to assess the unplugged CAT (Piatti et al., 2022), consisted of 109 stu-
dents (51 girls and 58 boys) sampled from eight classes in three public
schools in Ticino. The second group, participating in the experimental
study conducted in Spring 2023 to assess the virtual CAT, comprised
a more extensive and diverse sample of 129 students (65 girls and 64
boys), selected from nine classes across five public schools in Ticino
and Solothurn cantons.

It is important to note that the school and class selection process
was not random; rather, they were contacted and agreed to take part
in the study. This approach aimed to include a broader demographic
of students, ensuring diversity in age, sex, and geographic origin across
both linguistic regions.

Table 3 provides a breakdown of participant attributes, organised
by session (e.g., 1U for the unplugged study, 1 V for the virtual one),
including factors like canton, school ID and type, HarmoS grade (HG),
age category (with mean age and standard deviation), and sex distri-
bution. While a balanced distribution is evident across various factors
like school type, HG, age category, and sex, there is a notable exception
with the canton representation. Specifically, there are fewer students
from Solothurn Canton compared to Ticino, indicating a slight im-
balance in geographic representation. Nonetheless, these demographic
analyses provide valuable insights into the diverse characteristics of
participants in both studies.

This study adhered to high ethical standards, especially consid-
ering the involvement of young participants. We prioritised trans-
parency and respect in all procedures involving pupils, parents, and
educational institutions (Aebi-Müller, Blatter, Brigger, Constable, Eglin,
Hoffmeyer, Lautenschütz, Lienhard, Pirinoli, Röthlisberger, & Spycher,
2021; Petousi & Sifaki, 2020). Initially, comprehensive documentation
outlining the study’s objectives, data collection and storage methods,
and details about the research team were provided to school direc-
tors, teachers, and parents. Explicit authorisation was obtained from
school directors and teachers for the study activities. Subsequently, in-
formed consent was diligently secured from parents, explicitly seeking

permission for their children’s participation and data use.
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3.4. Data analysis

To address our research question regarding the evaluation of AT
competency in learners and the factors affecting performance, we em-
ployed a variety of statistical techniques. These methods were chosen
based on their appropriateness for analysing the CAT’s efficacy as an as-
sessment tool in both unplugged and virtual formats. Python was used
for exploratory and descriptive analyses, while R facilitated advanced
statistical analyses (R Core Team, 2023; Van Rossum & Drake, 2009).

3.4.1. Algorithmic thinking skills development
To analyse how students’ interaction strategies influence their al-

gorithmic thinking skills, we examined data from both unplugged and
virtual CAT experiments, focusing on the choice and use of artefacts,
levels of autonomy, and their effects on algorithmic thinking.

Initially, we conducted a qualitative analysis of students’ interaction
strategies to uncover recurring patterns and strategies across different
age groups. This involved examining how students engaged with var-
ious artefacts and how these interactions related to their algorithmic
thinking skills. Descriptive statistics were computed to summarise the
distribution of algorithmic dimensions across interaction types and
age groups, providing a baseline for understanding general trends in
algorithmic skills development.

To validate and extend our qualitative findings, we performed a
series of statistical analyses. We began with an Analysis of Variance
(ANOVA) to assess whether the type of artefact used significantly af-
fected algorithmic complexity. This method lets us compare the average
algorithmic complexity across multiple artefact types to see if there
are any significant differences. This analysis was conducted separately
for both unplugged and virtual environments. To find specific differ-
ences in complexity between students using different artefacts, we used
t-tests (Bartlett, 1937; Chambers, Hastie, & Pregibon, 1990; Cox &
Hinkley, 1979; Davison & Hinkley, 1997; Hastie, Friedman, & Tibshi-
rani, 2001; James, Witten, Hastie, & Tibshirani, 2013; Silvey, 2017).
This test compares the means of two groups to see if they differ signifi-
cantly, helping us identify which artefacts were most effective. After
finding significant differences with ANOVA, we conducted post-hoc

analyses to pinpoint specific differences between artefacts and highlight
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which were most effective in fostering complex algorithms. Tukey’s
HSD tests with Benjamini–Hochberg adjustments helped control for
errors when comparing multiple groups, airwise t-tests with Bonferroni
correction were used to ensure accurate comparisons between individ-
ual artefacts, while chi-squared tests of proportions assessed categorical
data (Benjamini & Hochberg, 1995; Bland & Altman, 1995; Cochran,
1954; Dunn, 1961; Moore & McCabe, 1989; Newcombe, 1998a, 1998b;
Perneger, 1998; Sedgwick, 2014; Tukey, 1949; Wilson, 1927; Yates,
1934).

For the virtual CAT interaction strategies, we tracked the frequency
of different interaction dimensions to identify preferences and tenden-
cies in artefact usage and autonomy among various student groups. This
analysis revealed how students adapt and switch between modalities,
providing insights into their capabilities, preferences, and adaptability.

To explore how interaction strategies and demographic factors
jointly impact algorithmic skills, we examined interaction effects be-
tween artefacts, age, sex, and schemas. To understand age-specific
patterns in algorithmic complexity we used ANOVA, which helped
us compare how age groups and interaction types affected algorithm
complexity, and linear regression models, which showed how these
factors combined to influence algorithmic skills (Fisk & Weisberg, 1982;
Hastie et al., 2001; Martin & Maes, 1979; Seber, 1984).

We extended our investigation with Estimated Marginal Means
(EMMs) analysis to examine the combined effect of age category and
interaction dimension on algorithm complexity in both unplugged and
virtual environments. (Lenth, 2023). This method helped interpret the
interaction between age and the influence of interaction dimensions on
algorithm complexity. We also used chi-squared tests of proportions to
explore differences in the distribution of higher algorithm dimensions
(2D) across various age categories and interaction dimensions.

Finally, to understand the interplay between age and sex, we anal-
ysed how these factors interact and affect algorithmic skills using
ANOVA and linear regression models. These models were consistent
with those used in previous analyses, ensuring a comprehensive under-
standing of the impact of age and sex on AT.

3.4.2. Student participation and success
We use descriptive statistics to explore participation and success

rates across various schemas, age groups, and interaction dimensions,
providing an overview of the overall trends and distributions of student
performance within each category.

To assess the significance of performance differences between age
categories and domains (unplugged and digital), we employed several
statistical tests. Chi-square test was used to evaluate the relationship
between categorical variables, such as age categories and interaction
dimensions. This test allowed us to determine if the observed fre-
quencies of student success rates differed significantly from what we
would expect by chance, thereby revealing any notable differences in
participation and success across different groups.

Tukey’s HSD test was used to identify which specific age groups
differed in their success rates, across domains. To address the issue
of multiple comparisons and reduce the likelihood of Type I errors
(false positives), we applied the Benjamini–Hochberg correction. This
adjustment modifies the p-values to control the false discovery rate,
ensuring that our findings are reliable and accurate.

3.4.3. Trial and error strategies
We investigated students’ trial and error (T&E) behaviours within

the virtual domain, focusing on understanding the factors influencing
task restarts and their correlation with task success. We employed Or-
dinary Least Squares (OLS) regression (Hastie et al., 2001; James et al.,
2013; Stone & Brooks, 1990; Zdaniuk, 2014), to explore the relation-
ship between T&E behaviours, specifically the frequency restarts, and
several predictors, including task complexity, age, sex, and interaction
dimension. This method was chosen because it allows us to assess how
well these predictors explain variations in restart frequency, quantify-
ing the strength and direction of these relationships, and determine
which factors most significantly impact students’ tendency to restart

tasks and how these factors correlate with overall task success. s
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3.4.4. Linear mixed model assessment of student performance
To evaluate the influence of various factors on CAT scores, we

employed linear mixed models (LMMs) due to the hierarchical na-
ture of our data, where students are nested within sessions, schools,
and cantons (Hox, Moerbeek, & Van de Schoot, 2017; Raudenbush &
Bryk, 2002). LMMs were chosen because they can handle such nested
structures and account for both fixed effects (e.g., sex) and random
effects (e.g., variability across sessions, schools, and cantons). This
approach allowed us to understand how different predictors influence
CAT performance while appropriately addressing the data’s hierarchical
correlations.

We build a baseline model (M0) using the Restricted Maximum
Likelihood (REML) approach with Satterthwaite’s approximation for
degrees of freedom, implemented via the lmer function from the
lmerTest packages in R (Kuznetsova, Brockhoff, & Christensen, 2017).

𝙲𝙰𝚃_𝚂𝙲𝙾𝚁𝙴 =𝛽0 + 𝛽1 ⋅ 𝙲𝙰𝙽𝚃𝙾𝙽 + 𝛽2 ⋅ 𝚂𝙴𝚇+

+ 𝑢𝚂𝚃𝚄𝙳𝙴𝙽𝚃 + 𝑢𝚂𝙴𝚂𝚂𝙸𝙾𝙽_𝙶𝚁𝙰𝙳𝙴 + 𝑢𝚂𝙲𝙷𝙾𝙾𝙻 + 𝑢𝚂𝙲𝙷𝙴𝙼𝙰 + 𝜖.
(2)

n our model, defined in (2), we considered various components.
he outcome variable is the 𝙲𝙰𝚃_𝚂𝙲𝙾𝚁𝙴, representing the performance
core. As fixed effects, we included 𝙲𝙰𝙽𝚃𝙾𝙽 due to the limited num-
er of cantons (only two cantons) and 𝚂𝙴𝚇, a binary predictor for
ex. As random effects, we included 𝚂𝚃𝚄𝙳𝙴𝙽𝚃, accounting for natural
eterogeneity among students, acknowledging unique factors like abil-
ties, prior knowledge, and unobserved characteristics inherent to each
tudent; 𝚂𝙴𝚂𝚂𝙸𝙾𝙽_𝙶𝚁𝙰𝙳𝙴 captures variations related to HarmoS Grade
nd testing sessions, such as time of day, classroom conditions, and
ifferences introduced by various teachers, as well as disparities across
ducational levels, acknowledging each grade’s unique curricular and
eaching aspects; 𝚂𝙲𝙷𝙾𝙾𝙻 represents variability among different schools,
ncompassing their unique environments and resources; and 𝚂𝙲𝙷𝙴𝙼𝙰

ccounts for variability among the 12 distinct tasks, isolating the task-
pecific characteristics. 𝛽0, 𝛽1, and 𝛽2 are the coefficients for the fixed
ffects, while 𝜖 is the error term representing the model’s unexplained
ariability.

The data analysis methods employed include iterative model com-
arison and refinement, starting with the baseline model (M0). We
sed the Likelihood Ratio Test (LRT) via the anova method in the
mreTest package in R (Bartlett, 1937; Chambers et al., 1990;
uznetsova et al., 2017) to assess different model fits and determine
redictors’ contributions to student performance. The LRT allowed us
o compare nested models to identify which predictors significantly
mproved the model fit.

After selecting the final model, we conducted a type III Analysis
f Variance (ANOVA) with Satterthwaite’s method. This analysis as-
essed the significance of different terms in explaining the variability in
AT scores across both virtual and unplugged domains. Satterthwaite’s
ethod is used to adjust for unequal variances and sample sizes,
roviding a more accurate test of significance for the predictors.

In addition, we investigated the effect of task completion time on
erformance, quantitatively examining its relationship with variables
ike age and interaction types. We analysed completion time as a
andom effect to explore its correlation with performance. Treating it
s a random effect allowed us to better capture individual variability
n completion pace, task complexity, and concentration levels, which
ight otherwise skew results if treated as a fixed effect.

We also explored student performance dynamics in both virtual
nd unplugged settings by merging the data and introducing new
ixed-effect predictors to differentiate between the two domains. Fur-
hermore, we conducted LRT to assess the overall impact of sex, iso-
ating it from the variability linked to different schools. This helped
s understand how sex influences performance while accounting for

chool-related differences.
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Fig. 2. Interaction strategies and algorithmic skills development. The 𝑦-axis illustrates the distribution of algorithmic dimensions across interaction dimensions on the 𝑥-axis
for each age category. Percentages represent the proportion of each combination within their respective age groups. The sum of percentages across rows and columns reveals the
aggregate preference or predominance for certain interaction-algorithmic strategies among different age groups.
Source: Subfigure (a) adapted from Piatti et al. (2022).
4. Results

In this section, we present a detailed analysis of the outcomes de-
rived from our evaluation of students’ algorithmic skills using the Cross
Array Task (CAT) in both unplugged and virtual formats, following the
methodologies delineated in the previous section.

Hereafter, when discussing the interaction dimension (combination
of artefact and autonomy), it is implied that we are referring to the
lowest interaction dimension, which provides valuable insights into
students’ baseline competency levels.

4.1. Algorithmic thinking skills development

By examining students’ interaction dynamics during the activity,
focusing on the artefacts they used and their level of autonomy, we
explore their impact on AT development, specifically on the algorithmic
dimension achieved. This investigation shed light on effective strategies
across both unplugged and digital domains. Additionally, we analyse
how factors such as age, sex, and schema performance interact with
these strategies and affect algorithmic complexity. We also examine
how the interaction between age and sex influences algorithmic compe-
tence, emphasising the importance of understanding these differences
in developing algorithmic skills.

4.1.1. Analysis of interaction strategies
Fig. 2 illustrates students’ interaction strategies and their impact on

algorithmic complexity across different age groups, for both unplugged
and virtual environments.

In the unplugged setting (Fig. 2(a)), younger pupils mainly used
medium-complexity interactions (VS), while older ones leaned towards
9 
more complex methods (V). Interestingly, even very young students
demonstrated an ability to conceive complex algorithms, although
simpler 1D and 0D algorithms were more common. With age, there was
a shift towards more complex 2D algorithms, although 1D algorithms
remained prevalent.

In the virtual domain (Fig. 2(b)), younger primarily used the sim-
pler interactions (GF), progressing to the G interaction (7–9 years)
and balanced use of all modes (10–13 years). The oldest group (14–
16 years) excelled in complex interactions (PF and P). Regardless of
age, a common tendency was to create mainly 1D algorithms, with
a developmental progression towards more complex 2D algorithms.
Even the youngest age category demonstrated proficiency in complex
2D algorithms, surpassing simpler 0D ones. This highlights the early
capability of young pupils to conceive intricate algorithms, especially
in the virtual domain.

Overall, Fig. 2 reveals that as students mature, they progressively
engage with more sophisticated interaction dimensions, shifting to
voice-based in the unplugged environment and to programming in
the virtual setting. The complexity of the algorithms created by stu-
dents also escalates with age, with the virtual environment seemingly
facilitating the use of more complex algorithms from an earlier age.

4.1.2. Analysis of interaction strategies effect on algorithmic skills
To determine whether the interaction dimension is a predictor of

the algorithm dimension and eventually determine if certain interaction
strategies are more effective in producing complex algorithms, we
performed a comprehensive statistical analysis for each domain.

ANOVA tests showed that artefact dimension is a significant pre-
dictor of algorithmic dimension in both virtual (𝑝 < 1𝑒 − 15∗∗∗∗) and
unplugged (𝑝 < 1𝑒 − 11∗∗∗∗) domains.
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T-tests reinforced these findings, revealing a considerable difference
in algorithmic capability favouring the virtual setting (𝑡 = −10.25365,
𝑝 < 1𝑒 − 23).

Further analysis using Tukey’s HSD test with BH adjustment and
pairwise t-tests with Bonferroni adjustment highlighted a substantial
impact of the PF artefact on algorithm dimension. Notably, the mean
difference between PF and VSF was approximately 0.83 (𝑝 < 1𝑒−4∗∗∗∗),
while other comparisons also yield highly significant differences (𝑝 <
0.001∗∗∗) when PF is compared to the other artefacts.

The chi-squared test of proportions test added further weight to
these findings, demonstrating highly significant variations in the preva-
lence of higher algorithm dimensions across different artefact cate-
gories (𝜒2 = 140.38, 𝑝 < 1𝑒 − 15∗∗∗∗). Notably, the virtual PF artefact
exhibited the highest proportion of higher algorithm dimensions (46%),
followed by P (39%), showcasing its remarkable efficacy in fostering
more complex algorithmic constructs, particularly compared to the
unplugged alternatives.

4.1.3. Interaction strategies development in the virtual CAT
Focusing on the virtual CAT sample, central to our previous conclu-

sion on the superiority of virtual artefacts, we analysed the interaction
dimensions frequency, comparing the least complex ones with the most
prevalent across age groups to discern variations in usage patterns.
Fig. 3 illustrates a trend suggesting an interesting evolution in students’
interaction preferences as pupils grow older.

In the youngest age category, where exposure to technology is
limited, we restricted them to using programming interfaces, specifi-
cally allowing only gesture interactions. In this group, both the lowest
and prevalent interaction dimensions align closely, with GF, the less
complex option, being the predominant choice.

As students aged into the 7-9-year bracket, restrictions were lifted.
While gesture interfaces remain the more popular assignment, some
pupils explored visual programming interfaces, indicating a willingness
to explore advanced methods.

Students in the third age group fairly used all four interaction
dimensions, showcasing increased versatility and adaptability.

The oldest students leaned towards the most complex interaction
dimensions (PF and P), preferring complexity and proficiency with
more advanced methods.

Fig. 3. Distribution of interaction dimensions by age group in the virtual CAT.
The 𝑦-axis displays counts of the lowest and most used interaction dimensions,
represented by solid and striped bars, across four age categories on the 𝑥-axis. The
younger age group exclusively used the gesture interface (GF and G), as visual
programming (PF and P) was not allowed.

4.1.4. Analysis of age-related development of algorithmic skills
The ANOVA tests aimed at understanding the role of age in the

development of AT, demonstrated a positive correlation between age
and algorithmic complexity in the unplugged (𝑝 < 1𝑒−1∗∗∗∗) and virtual
(𝑝 < 1𝑒− 6∗∗∗∗) contexts, indicating that as the age increases, there is a
corresponding increase in the complexity of the algorithm produced.

In the unplugged setting, older age groups (10–13 and 14–16)
showed higher algorithmic dimensions and positive coefficients
10 
(0.23052, 𝑝 < 1𝑒−06∗∗∗∗; 0.36585, 𝑝 < 1𝑒−14∗∗∗∗). Similar patterns were
observed in the virtual context for the older age category (0.23200,
1𝑒−06∗∗∗), reinforcing the link between older age categories and higher
algorithm dimensions.

The chi-squared tests of proportions reveal significant age-related
variations in higher algorithm dimensions in both domains (𝑝 <
0.0001∗∗∗∗), with proportions increasing with age, reaching 26% in the
unplugged and 36% in the virtual environment for the 14 to 16 years
old category.

4.1.5. Analysis of the interplay of interaction strategies and age and their
impact on algorithmic skills

To further detail the analysis, we examined the interaction between
interaction strategies and age, demonstrating its significant effect on
algorithmic skills. Interestingly, this interaction was found to be signifi-
cant in both the unplugged (𝑝 = 0.00839∗∗) and virtual (𝑝 = 0.000106∗∗∗)
environment, indicating that the effect of artefacts varies across age
categories.

The linear regression model and the EMMs analysis yielded in-
sightful distinctions in how different artefacts influence the algorithm
dimension across various age groups. In the unplugged setting, artefact
V was effective (0.56991, 𝑝 = 1𝑒−06∗∗∗∗), particularly for more mature
learners (EMM = 1.060, SE = 0.0731), but its effectiveness diminished
for younger age groups, where there is a marked preference for the
simplest artefact, VSF (EMM = 1.500, SE = 0.4233). Conversely, in the
virtual environment, the influence of artefact complexity on algorithm
dimension appeared less directly correlated with age. Younger students
benefited from GF (EMM = 1.090, SE = 0.0394), while older age groups
engaged more with complex artefacts like PF (EMM = 1.465, SE =
0.0391) and P (EMM = 1.431, SE = 0.0409).

The chi-squared test of proportions across different age categories
and artefacts yields intriguing insights into the distribution of algorithm
dimensions. Significant differences were observed in each age group,
with the most pronounced disparities in the oldest age category (𝜒2 =
81.434, 𝑝 < 1𝑒 − 15∗∗∗∗).

Dominant artefacts showed intriguing trends. In the unplugged set-
ting, V is dominant for children aged 3 to 6 years, while VS takes over
(15%) as they grow older, and V resurfaces as the dominant artefact
(20%) for those aged 10 to 13 years and remains strong for 14 to 16-
year-olds (26%). In the virtual domain, younger age groups prefer GF
(24% and 38%), but a notable shift occurs at ages 10 to 13, where
PF becomes dominant (45%), persisting for 14 to 16-year-olds (47%),
closely followed by P (44%). These changes in dominant artefacts
reveal the influential role of virtual domain artefacts, particularly PF,
in shaping algorithm dimensions across diverse age groups.

4.1.6. Analysis of the interplay of interaction strategies and sex and their
impact on algorithmic skills

Following, we examined how interaction strategies and sex inter-
act to influence algorithmic complexity. Our goal was to understand
whether the interaction between these factors significantly affects the
algorithmic dimension and whether these effects differ between the
types of interaction performed.

The ANOVA reports contrasting results for the two environments.
In particular, the interaction between artefact and sex is not significant
in the unplugged domain (𝑝 = 0.2655), while in the virtual domain, this
interplay is marginally significant (𝑝 = 0.0521).

The linear regression analysis confirms the finding from ANOVA.
The significant interaction between the simplest virtual artefact G and
sex (0.21394, 𝑝 = 0.00642∗∗) suggests that the negative impact of
artefact G on algorithmic complexity is less pronounced for males. This
means that while artefact G generally reduces algorithmic complexity,
this reduction is smaller for males than females.



G. Adorni et al. Computers in Human Behavior Reports 15 (2024) 100466 
Table 4
Student participation and success rates across schemas. The number and percentage of students who attempted and successfully completed each schema. Success rate is
reported only for the virtual CAT, calculated from the number of students who attempted the schema. Rows shaded in grey indicate schemas with success rate exceeding 80%.
(a) Unplugged CAT.

No. pupils
total

No. pupils
participating

Participation
(%)

Sc
he
m
a

1 109 109 100%
2 109 109 100%
3 109 109 100%
4 109 109 100%
5 109 109 100%
6 109 109 100%
7 109 109 100%
8 109 107 98%
9 109 105 96%
10 109 105 96%
11 109 105 96%
12 109 104 95%

(b) Virtual CAT

No. pupils
total

No. pupils
participating

Participation
(%)

No. pupils
succeeding

Success
(%)

Sc
he
m
a

1 129 126 98% 119 94%
2 129 127 98% 93 73%
3 129 127 98% 100 79%
4 129 129 100% 106 82%
5 129 128 99% 109 85%
6 129 127 98% 112 88%
7 129 125 97% 98 78%
8 129 126 98% 92 73%
9 129 121 94% 98 81%
10 129 118 91% 91 77%
11 129 110 85% 82 75%
12 129 110 85% 78 71%
T
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4.1.7. Analysis of the interplay of interaction strategies and schemas and
their impact on algorithmic skills

By exploring how different interaction strategies and schemas inter-
act to affect algorithmic skills, we aim to understand the joint influence
of these factors on the algorithmic dimension and discuss possible
reasons why the schema used might alter the effect of the artefact on
algorithmic complexity.

ANOVA results reveal a significant interaction between these factors
in the unplugged domain (𝑝 = 1𝑒 − 9∗∗∗∗) and even stronger in
the virtual one (𝑝 = 1𝑒 − 13∗∗∗∗), suggesting a notable variation in
how different artefacts affect algorithmic complexity depending on the
schema performed.

In the unplugged environment, linear regression analysis identifies
significant interactions between artefacts and specific schemas. For
instance, artefact VS in combination with schemas 3, 4, 7, 8 and 12, as
well as artefact PF with schemas 9, 10, 11, and 12, shows significant
effects. The negative estimates for these interactions suggest that these
strategies substantially reduce algorithmic complexity when applied
to the given schemas. In the virtual environment, the analysis also
highlights significant interactions. Artefact P, combined with schemas
2, 3, 8, 9, 10, 11, and 12, and artefact PF with schemas 9, 10, 11,
and 12, shows significant effects. The positive estimates indicate that
students applying these interaction strategies on specific schemas show
higher algorithmic skills.

Finally, to understand whether and how the relationship between
sex and algorithmic complexity varies by age, we examine how these
factors interact and impact algorithmic skills. The significant interac-
tions between age and sex on algorithmic skills in both environments
suggest that the relationship between sex and algorithmic dimension is
moderated by age.

ANOVA results show a significant interaction between age category
and sex for both the unplugged environment (𝑝 = 0.00364∗∗) and the
virtual one (𝑝 = 0.000115∗∗∗), indicating that the effect of sex on
algorithmic skills differs by age.
 s

11 
The linear regression model for the unplugged environment reveals
that male participants aged 10 to 13 years show a higher algorith-
mic dimension compared to their female counterparts (0.22245, 𝑝 =
0.011∗), while the interaction for older age groups is not significant.

his indicates that, for this age range, sex differences in algorithmic
kills are more pronounced. In the virtual environment, the situation
s reversed. Male participants aged 10 to 13 years exhibit lower al-
orithmic dimensions compared to females, reflecting a potential sex
isparity that reverses from the unplugged environment (−0.29045, 𝑝 =
.00641).

.2. Student participation and success

.2.1. Analysis of the interplay of age and sex and their impact on algo-
ithmic skills

Table 4 provides a detailed overview of student participation and
uccess on individual schemas. On the one hand, for the unplugged
AT, pupils successfully tackled tasks up to schema 7. Beyond that
oint, some experiments were heated due to time constraints, though
he participation rate remained high, with a minimum of 95%. On the
ther hand, for the virtual CAT, the participation rate, while still no-
ably high, experienced a slight decrease, reaching a minimum of 85%.
his decrease could be attributed to students having the autonomy
o interrupt their participation voluntarily, something they could not
o in the unplugged CAT. Therefore, high participation in the virtual
AT indicates strong determination and intrinsic interest. Regarding
uccess rates, in the unplugged CAT, all students successfully completed
ach schema they attempted, as they were guided to correct any errors
hey made. However, for the virtual CAT, success rates varied. Schema

had the highest success rate at 94%, fitting its role as an easy
ntroductory task. Conversely, schemas 11 and 12 show success rates
f 75% and 71%, indicating increased complexity. The drop in success
ates for schemas 2 and 8 to 73%, despite similar attempts to schema
, may indicate heightened task complexity or a mismatch between
tudents’ skills and schema demands. The non-linear decline in success
s

Table 5
Student participation and success rates across age categories in the virtual CAT. The number and percentage of students who attempted and successfully completed all 12
schemas, grouped by age category, along with the median and range of schemas attempted and succeeded, with the interquartile range (IQR) indicated by the median (Q2) and
spanning from the 25th percentile (Q1) to the 75th percentile (Q3). Success rate is calculated from the number of students participating.

No. pupils
total

No. pupils
participating

in all 12 schemas

Participation
(%)

Median schemas
participated

(Q1-Q3)

No. pupils
succeeding

in all 12 schemas

Success
(%)

Median schema
succeeded
(Q1-Q3)

3-6 yrs 27 18 67% 12 (11-12) 6 33% 10 (8-11)
Age 7-9 yrs 33 30 91% 12 (12-12) 4 13% 10 (9-11)

category 10-13 yrs 20 13 65% 12 (11-12) 3 23% 10 (7-11)
14-16 yrs 49 38 78% 12 (12-12) 11 29% 10 (8-11)
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Fig. 4. Age-wise distribution of CAT score levels. The 𝑦-axis represents CAT score levels, the 𝑥-axis depicts age categories, and each cell displays the number and percentage
of students falling into specific score level categories.
rates as the schema numbers increase suggests that students perceive
varying difficulty levels, which may not always align with educators’
intended challenges. This is confirmed by the REML model analysis
in Section 4.4.5, highlighting variations in students’ experiences of
difficulty within a set of tasks that, contrary to initial assumptions, do
not follow a gradual order of difficulty, in line with the unplugged CAT
results (Piatti et al., 2022).

Expanding the analysis to the virtual domain, Table 5 illustrates
trends in student participation and success across age categories. Par-
ticipation rates exceeded 65% for all age groups, with 7–9 year-olds
showing a particularly high attempt rate of 91%. In contrast, success
rates revealed that the youngest and oldest students achieved the
highest success rates. Students clustered within a consistent range of
solved schemas in each age category, a part of those in the 10–13
category had a slightly wider interquartile range (IQR), suggesting that
they might have attempted fewer schemas than other age groups.

Examining student performance across age groups in Fig. 4 for
both the unplugged and virtual CAT, it is evident that performance
increases with age. These differences are statistically significant for
both the unplugged (𝜒2 = 276.21, 𝑝 < 1𝑒 − 15∗∗∗∗) and virtual (𝜒2 =
12 
735.73, 𝑝 < 1𝑒 − 15∗∗∗∗) domains. The result from the Tukey HSD for
pairwise comparisons in Table 6 shows that the significance holds for
all age categories except the two youngest ones, where the unplugged
domain shows a decrease in significance, and the virtual domain lacks
significance.

Returning to the virtual domain, the tendencies across the inter-
action dimensions, illustrated in Table 7, indicate participation levels
ranging from 39% to 67%, with G and GF interactions leading at 67%
and 66%, respectively. GF stands out as the interaction dimension with
the highest median and a more consistent pattern of attempting a
greater number of schemas. Success rates consistently range from 90%
to a perfect 100%, with PF showing a perfect score. While high in par-
ticipation, G exhibits a lower success rate than programming interfaces
(PF and P), suggesting limitations in handling complex tasks. Notably,
artefacts with feedback (GF and PF) exhibit higher success rates, with
GF having the highest median success rate and a moderate spread, and
PF, though not reaching the same median success rate, demonstrates
effectiveness with a moderate spread in individual success rates.
.

Table 6
Pairwise comparison between age groups. The result from Tukey’s HSD test for pairwise comparisons with Benjamini–Hochberg 𝑝 value correction for false rate detection rates
(a) Unplugged CAT

3-6 yrs 7-9 yrs 10-13 yrs

7–9 yrs 𝑝 < 0.01∗∗

10–13 yrs 𝑝 < 0.0001∗∗∗∗ 𝑝 < 0.0001∗∗∗∗

14–16 yrs 𝑝 < 0.0001∗∗∗∗ 𝑝 < 0.0001∗∗∗∗ 𝑝 < 0.001∗∗∗

(b) Virtual CAT

3-6 yrs 7-9 yrs 10-13 yrs

7–9 yrs 𝑝 = 0.0542
10–13 yrs 𝑝 < 0.0001∗∗∗∗ 𝑝 < 0.0001∗∗∗∗

14–16 yrs 𝑝 < 0.0001∗∗∗∗ 𝑝 < 0.0001∗∗∗∗ 𝑝 < 0.0001∗∗∗∗

∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001, ∗∗∗∗ 𝑝 < 0.0001
Table 7
Student participation and success rates across interaction dimensions in the virtual CAT. The number and percentage of students who attempted and successfully completed
any schema, grouped by interaction dimension, along with the median and range of schemas attempted and succeeded, with the interquartile range (IQR) indicated by the median
(Q2) and spanning from the 25th percentile (Q1) to the 75th percentile (Q3). Success rate is calculated from the number of students participating.

No. pupils
total

No. pupils
participating

in any schema

Participation
(%)

Median schemas
participated

(Q1-Q3)

No. pupils
succeeding in
any schemas

Success
(%)

Median schemas
succeeded
(Q1-Q3)

GF 129 85 66% 7 (4-9) 78 (92%) 6 (3-8)
Interaction G 129 87 67% 4 (1-7) 79 (91%) 2 (1-4)
dimension PF 129 50 39% 5 (2-8) 50 (100%) 4 (2-7)

P 129 58 45% 4 (1-7) 52 (90%) 3 (1-6)
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Fig. 5. Restarts distribution per interaction dimension. For each interaction dimension on the 𝑥-axis, specifically in (a) representing the lower-level interaction dimension used,
and in (b) representing the most frequently used interaction dimension, the 𝑦-axis displays the average number of restarts.
4.3. Trial and error strategies

The analysis of task restart frequency, as an indicator of trial and
error (T&E) strategies, provides valuable insights into the factors influ-
encing this behaviour and its impact on performance outcomes.

4.3.1. Factors influencing restarts
Our findings indicate that neither the characteristics and complex-

ities of schemas (−0.0098, 𝑝 = 0.161) nor sex (−0.0059, 𝑝 = 0.902),
significantly influence restart behaviour.

Exploring the interaction dimension’s influence, a negative correla-
tion between complexity and restart frequency is observed, indicating
that as students work with increasingly complex artefacts, they tend to
restart their tasks less frequently, as shown by the coefficients for both
the lowest interaction dimension (−0.0283, 𝑝 = 0.180) and the preva-
lent interaction dimension (−0.0168, 𝑝 = 0.427). Fig. 5(a) supports
this, showing that, for the lowest artefact used, the average num-
ber of restarts decreases when dealing with more complex artefacts.
Fig. 5(b) further shows a non-linear relationship between prevalent
artefact complexity and restarts. The slight increase in restarts from
non-autonomous (GF and PF) to autonomous use (G and P) suggests
that visual feedback within artefacts is crucial in supporting students’
task participation and reducing restarts, possibly indicating uncertainty
when such support is absent.

Fig. 6. Restarts distribution per age. For each age category on the 𝑥-axis, the average
number of restarts is reported on the 𝑦-axis.
13 
Age plays a significant role in restart behaviour, as reflected in
a statistically significant inverse relationship (−0.0167, 𝑝 = 0.012∗),
indicating that older students are less inclined to restart tasks. Fig. 6
illustrates this decrease in the average number of restarts with increas-
ing age categories. A peak in restarts among the 7–9 age group suggests
increased exploration or developing problem-solving efficiency, while
the decline in restarts among older groups (10–13 and 14–16 years)
may signal improved problem-solving skills and a greater ability to
integrate past experiences, indicating a shift towards more advanced
problem-solving approaches as students mature.

4.3.2. Restarts influence on performance
Our regression analysis further probed the relationship between

restart behaviour and performance outcomes, including algorithm com-
plexity and CAT scores, yielding contrasting results. For the algorithm
dimension, there is no significant relationship with restarts (−0.0221,
𝑝 = 0.232), indicating that restart frequency may not reliably predict
algorithmic performance. Similarly, the link between restarts and CAT
scores was not statistically significant (−0.0677, 𝑝 = 0.110).

Our exploration of potential non-linear relationships, using polyno-
mial terms in regression models, did not reveal significant patterns for
algorithmic performance (𝑝 = 0.200, 0.407, and 0.497).

In contrast, the analysis of CAT scores with polynomial terms uncov-
ered a nuanced relationship. Initially, increased restarts were associated
with decreased scores (−0.4509, 𝑝 = 0.001∗∗). However, introducing a
quadratic term revealed a positive effect (0.0895, 𝑝 = 0.031∗), suggest-
ing a non-linear connection, indicating that beyond a certain threshold,
an increase in restarts leads to improvements. Despite this, the cubic
term did not achieve statistical significance (−0.0037, 𝑝 = 0.151), in-
dicating that additional complexity did not enhance our understanding
of this relationship.

4.4. Linear mixed model assessment of student performance

4.4.1. Model selection and refinement
Analysing the baseline model (M0), defined in Section 3.4.4, from

the model summary in Table 8 indicates slight non-significant varia-
tions in CAT scores between male and female students, with a negative
coefficient suggesting slightly lower performance in males (𝑝 = 0.497).
Similarly, regarding canton, students from Ticino do not show statisti-
cally significant differences in CAT scores compared to students from
Solothurn (𝑝 = 0.719). Variance estimates reveal variation in student
performance across different grouping levels, particularly at the school
and student levels.
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Table 8
Baseline model summary. The REML criterion at convergence is 4044.3 for the
baseline linear mixed-effects model.
(a) Scaled residuals.

Min Q1 Median Q3 Max

−3.785 −0.582 0.050 0.611 3.569

(b) Random effects. Number of observations: 1457.
Groups: Student, 129; Schema, 12; Session-Grade, 9; School, 5.

Groups Name Variance SDa

Student (Intercept) 0.490 0.700
Schema (Intercept) 0.057 0.238
Session-Grade (Intercept) 0.054 0.232
School (Intercept) 0.931 0.965
Residual 0.756 0.870

a Standard deviation
(c) Fixed effects.

Estimate SEb df 𝒕c 𝒑d

(Intercept) 2.169 0.986 2.826 2.200 0.121
Sexe −0.090 0.132 120.082 −0.681 0.497
Cantonf 0.439 1.101 2.815 0.398 0.719

b Standard error
c 𝑡 value
d 𝑝 value = 𝑃𝑟(> |𝑡|)
e Sex: Male
f Canton: Ticino

Table 9
LRT to evaluate the inclusion of canton as a predictor. Comparison between
the reduced model (M1) without the canton predictor and the baseline model (M0)
including it.

Model AICa 𝝌𝟐 𝒑b

M1 4058.1
M0 4059.8 0.275 0.5998

a Akaike Information Criterion for the model evaluated as −2 ⋅ (logLik− npar). Smaller
is better.
b 𝑝 value = 𝑃𝑟(> 𝜒2).

We proceed by iteratively comparing and refining our model, start-
ing with the baseline (M0), better to understand the predictors’ con-
tributions to student performance. The LRT results in Table 9 indicate
that including the canton predictor does not significantly improve the
model’s fit (𝑝 = 0.5998), likely due to the limited representation of
Swiss cantons in the data (only 2 out of 26 sampled). Therefore, we
opt for the simpler reduced model (M1). To assess the impact of sex,
whose effect was not statistically significant, we compared three models
by considering different combinations of predictors. The LRT results
in Table 10 show that including sex as a fixed effect (M2) did not
significantly enhance model fit (𝑝 = 0.4881), suggesting it may not be
a substantial predictor of CAT scores alone. However, the improved

Table 10
LRT to evaluate the inclusion of sex as a predictor. Comparison between the reduced
model (M1) without the canton predictor, another reduced model (M2) without canton
and sex, and an improved model (M3) without canton, but that considers sex as a
random slope within schools. Rows shaded in grey indicate statistically significant
models.

Model AICa 𝝌𝟐 𝒑b

M2 4056.6
M1 4058.1 0.481 0.4881
M3 4048.3 11.785 0.0006∗∗∗

∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001, ∗∗∗∗ 𝑝 < 0.0001
Akaike Information Criterion for the model evaluated as −2 ⋅ (logLik− npar). Smaller

s better.
𝑝 value = 𝑃𝑟(> 𝜒2)
14 
odel (M3) without the predictor shows a significant improvement in
it compared to the model without sex (𝑝 < 1𝑒 − 3∗∗∗), indicating that
ex-related differences may vary across schools.

𝙰𝚃_𝚂𝙲𝙾𝚁𝙴 =𝛽0 + (𝛽1 + 𝛽2 ⋅ 𝚂𝙴𝚇 + 𝜖𝚂𝙴𝚇|𝚂𝙲𝙷𝙾𝙾𝙻)+

+ 𝑢𝚂𝚃𝚄𝙳𝙴𝙽𝚃 + 𝑢𝚂𝙴𝚂𝚂𝙸𝙾𝙽_𝙶𝚁𝙰𝙳𝙴 + 𝑢𝚂𝙲𝙷𝙴𝙼𝙰 + 𝜖.
(3)

ur chosen model (M3), defined in (3), comprises 𝛽0, which repre-
ents the intercept coefficient, while 𝛽1 and 𝛽2 are the coefficients for
he effect of sex on school. As random effect we included 𝚂𝚃𝚄𝙳𝙴𝙽𝚃,
𝙴𝚂𝚂𝙸𝙾𝙽_𝙶𝚁𝙰𝙳𝙴, and 𝚂𝙲𝙷𝙴𝙼𝙰. Finally, 𝜖SEX is the error term for the in-
eraction between sex and school, while 𝜖 is the unexplained variability
n the model.

The summary of the models is provided in Table 11. The inter-
ept in the fixed effects fis significant for both the unplugged (𝑝 =
.014∗) and virtual domains (𝑝 = 0.00286∗∗). This suggests that the
verage CAT score significantly differs from zero when accounting
or random effects, indicating a baseline proficiency level within the
tudent population. Exploring the random effects, in both domains the
argest source of variance is attributed to school-level differences (U =
.47939, V = 0.87332), suggesting that factors unique to each school
ignificantly influence CAT scores. The variance related to sex is similar
or both domains, with a lower positive correlation in the unplugged
omain (0.14) compared to the negative in the virtual domain (−0.49).
his indicates that sex dynamics and school-specific factors impact
ale and female students’ performance differently, with a trend in

he virtual CAT where schools with higher overall performance may
ave lower scores for male students and vice versa. The variance
ssociated with individual students is higher for the virtual domain (U
0.23476, V = 0.40687). This difference possibly reflects the diversity

n students’ abilities and the influence of other unmeasured factors,
ith a more homogeneous response observed with unplugged artefacts.

able 11
odel summary. The REML criterion at convergence is 3377.3 for the unplugged

omain (U) and 4032.5 for the virtual domain (V) in the linear mixed-effects models.
(a) Scaled residuals.

Min Q1 Median Q3 Max

U -3.574 -0.656 -0.048 0.563 2.855

V -3.797 -0.578 0.048 0.616 3.537

(b) Random effects. The unplugged domain (U) has 1280 observations with groups
Student (109), Schema (12), Session-Grade (8), School (3). The virtual domain (V)
has 1457 observations with groups: Student (129), Schema (12), Session-Grade (9),
School (5).

Groups Name Variance SDa Corr

U

Student (Intercept) 0.235 0.485
Schema (Intercept) 0.197 0.443
Session-Grade (Intercept) 0.024 0.154
School (Intercept) 0.479 0.692

Sexb 0.027 0.164 0.14
Residual 0.671 0.819

V

Student (Intercept) 0.407 0.638
Schema (Intercept) 0.057 0.237
Session-Grade (Intercept) 0.059 0.243
School (Intercept) 0.873 0.935

Sexb 0.253 0.503 -0.49
Residual 0.756 0.870

a Standard deviation
b Sex: Male
(c) Fixed effects. Rows shaded in grey indicate statistically significant fixed effects.

Estimate SEc df 𝒕d 𝒑e

U (Intercept) 2.827 0.432 2.397 6.54 0.014∗

V (Intercept) 2.429 0.389 4.194 6.244 0.003∗∗

∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001, ∗∗∗∗ 𝑝 < 0.0001
c Standard error
d 𝑡 value
e 𝑝 value = 𝑃𝑟(> |𝑡|)
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For session-grade, the unplugged dataset shows a smaller variance (U
= 0.02378, V = 0.05883), suggesting more consistent performance
across different sessions than the virtual domain. This may indicate
a more stable impact of session-grade factors like age progression,
curriculum complexity, teaching methods, or cohort effects on student
performance. Finally, the significant difference in variability attributed
to schemas between the unplugged and virtual domains (U = 0.19660,
V = 0.05605) suggests that differences in activity nature, information
presentation, or features like the ability to skip or solve schemas in
preferred order may contribute to this variation.

Table 12
Type III analysis of variance (ANOVA) table with Satterthwaite’s method. Rows
shaded in grey indicate statistically significant variables.

AICa LRTb 𝒑c

U

3393.3
Schema 3653.2 261.903 <1e-15∗∗∗∗

Sexd 3389.7 0.438 0.803
Session-Grade 3393.1 1.780 0.182
Student 3584.7 193.418 <1e-15∗∗∗∗

4048.5
Schema 4112.5 65.75 <1e-15∗∗∗∗

V Sexd 4056.7 12.20 0.002∗∗

Session-Grade 4049.6 3.11 0.078
Student 4397.0 350.52 <1e-15∗∗∗∗

∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001, ∗∗∗∗ 𝑝 < 0.0001
a Akaike Information Criterion for the model evaluated as −2 ⋅ (logLik− npar). Smaller
is better.
b LRT statistic; twice the difference in log-likelihood, which is asymptotically
chi-square distributed.
c 𝑝 value = 𝑃𝑟(> 𝜒2)
d Sex in (1 + Sex | School).

The ANOVA results in Table 12 further confirm the significance
of the random effects, particularly for Schema and student (𝑝 < 1𝑒 −
15∗∗∗∗), highlighting their crucial role in the model’s explanatory power
and indicating that both the type of task and individual student differ-
ences have a substantial impact on CAT scores. Interestingly, the impact
of sex on CAT scores varies significantly across schools in the virtual
dataset (𝑝 = 0.002∗∗), while in the unplugged dataset, this variation
is not statistically significant (𝑝 = 0.803), indicating that the role of
sex-related factors is more pronounced in a virtual environment, con-
tributing to varying outcomes in student performance across different
schools.
15 
4.4.2. Sex influence within schools on performance
Comparing sex-related school performance in the two domains,

from Fig. 7, we see no significant sex effect across schools for the
unplugged domain. In contrast, the virtual domain exhibits variability
in CAT scores between male and female students across schools. Certain
schools (e.g., D) show higher CAT scores for male students than others
(e.g., F), challenging the idea of a uniform sex effect.

Focusing on average performances across schools, we discern differ-
ences in the baseline performance for both domains. In the unplugged
case, A performs below average, B slightly below, and C notably above.
In the virtual case, schools exhibit varied impacts on female students,
with some (A, D, and E) showing decreased CAT scores and others (F
and G) demonstrating increased scores.

4.4.3. Individual student variability in performance
The analysis of student performance in Fig. 8 showed significant

individual variability in both domains. The presence of high achievers
(blue dots to the right) and those facing challenges (red dots to the
left) is consistent across both datasets, highlighting a diverse range
of performances. This indicates a substantial amount of unexplained
variability not accounted for by other factors considered in the study.

Despite accounting for school-level differences in the model, unex-
plained variability in CAT scores persists among students, indicating
significant differences in performance residuals across various schools.
This suggests that factors associated with the distinct educational en-
vironments of each school might contribute to the observed variance.
Statistical analysis, specifically Levene’s test, supports this observation
(𝑝 < 1𝑒 − 15∗∗∗∗).

4.4.4. Session grade impact on performance
Examining the impact of session and grade on scores in Fig. 9, no

statistical differences in performance across sessions and grades are
observed in both the unplugged and virtual domains. The pattern of
fluctuations implies a complex relationship between sessions, grades,
and CAT scores. Notably, lower performance is observed from the
initial to the middle sessions, coinciding with lower HarmoS grades
(HGs). Positive deviations in higher sessions suggest that older students
generally perform better. This consistency implies that advanced cogni-
tive skills and better adaptation to educational demands may contribute
to improved performance among older students.
Fig. 7. Sex-related school performance variations. The plot on the left captures the variability in CAT scores between schools for male students compared to female students,
illustrating how scores differ across schools based on sex. On the right, the plot shows the intercept, representing the average variability between schools, exclusively focusing on
female students. Blue points represent scores above average, while reds those below. Horizontal lines represent the estimates’ confidence intervals.
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Fig. 8. Individual student performance variations. Each point represents the student deviation from the average CAT score, with blue indicating scores above average and red
below. Horizontal lines represent the estimates’ confidence intervals.
Fig. 9. Session-Grade performance variations. Each point represents the session deviation from the average CAT score, with blue indicating scores above average and red below.
Horizontal lines represent the estimates’ confidence intervals.
4.4.5. Schema-based differences in performance
Task performance varies across different schemas in both the un-

plugged and virtual domains, as depicted in Fig. 10. For the unplugged
dataset, initial schemas (1 to 6) generally yield good performance,
although there is a decline as the schema number increases, hinting
at rising task difficulty. Schemas 7 to 9 show below-benchmark scores
but with improving trends, suggesting student adaptation or better task
alignment. Scores rise in schemas 10 and 11 but drop significantly
in schema 12, possibly due to task difficulty or misalignment with
student abilities. A consistent decreasing trend is observed in the vir-
tual dataset, although with some irregularities. Performance is above
the benchmark for less difficult tasks (1 to 5) and declines below
the benchmark (6 to 12) with increasing task difficulty. Notably, the
mean CAT score for schema 8 is above the benchmark, suggesting
better-than-expected performance on average.

To explore performance trends and irregularities across different
tasks, we specifically looked at the algorithm dimension instead of
overall performance. This examination pertains specifically to the vir-
tual CAT, where we have precise and comprehensive information on
16 
all the commands students use in crafting their algorithms. Fig. 11(a)
indicates that the algorithm dimension varies across tasks, suggesting
that students adapt their problem-solving strategies to each task rather
than following a linear regression of algorithm complexity. Notably,
for schemas 1, 2, 5, 6, and 12, students often use 1D dimensional
algorithms driven by practical considerations. Sometimes, a simpler,
less complex algorithm with fewer moves is more effective than a
more intricate one. This preference for efficiency does not imply lower
performance but reflects a pragmatic approach to problem-solving,
as argued in Section 2.4.1. To assess student performance, we intro-
duced an alternative method considering both algorithm complexity
and efficiency. The adapted algorithm dimension metric, presented in
Fig. 11(b), demonstrates a more linear decrease in average algorithm
dimensions. Fig. 12(b) shows the original and updated distribution of
performance across schemas using the new metric.

4.4.6. Effect of task completion time on performance
In the concluding phase of our analysis, we incorporated task com-

pletion time as a random effect into our existing model. This specific
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Fig. 10. Schema-based performance variations. Each point represents the schema deviation from the average CAT score, with blue indicating scores above average and red
below. Horizontal lines represent the estimates’ confidence intervals.
Fig. 11. Algorithm dimension variations across age categories at schema level. The 𝑦-axis represents the average variations in algorithm dimension for each age category,
plotted against different schemas on the 𝑥-axis.
Fig. 12. Performance variations across age categories at schema level. The 𝑦-axis represents the average variations in CAT score for each age category, plotted against different
schemas on the 𝑥-axis.
examination was exclusive to the virtual CAT, benefiting from detailed
records of task completion times. We aimed to uncover the correlation
between the time students spent on tasks and their ensuing performance
levels.

In Fig. 13, a non-linear relationship between task completion time
and performance is evident. Both extremely brief and significantly
extended durations appear beneficial, resulting in higher CAT scores.
17 
This observation suggests that rapid responses may be driven by strong
intuition or familiarity, while longer times may reflect a more analytical
approach, likely enhancing performance. On the other hand, inter-
mediate completion times do not seem to capitalise on the strengths
of either approach, potentially explaining the observed dip in scores
and the negative impact on performance associated with moderate
haste.
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Table 13
Activity completion time across age categories. The time spent by students to complete all 12 schemas, including mean, minimum and maximum values, median, and interquartile
ranges (Q1-Q3), grouped by age category. The overall summary statistics at the bottom provide an overview of completion times for the entire dataset.

Mean Min Q1 Median Q3 Max

3–6 yrs 20 m 53 s 03 m 41 s 15 m 48 s 21 m 50 s 27 m 14 s 35 m 51 s
Age 7–9 yrs 13 m 13 s 05 m 27 s 09 m 52 s 12 m 24 s 13 m 54 s 29 m 39 s

category 10–13 yrs 26 m 41 s 05 m 19 s 17 m 04 s 25 m 04 s 41 m 51 s 52 m 26 s
14–16 yrs 29 m 34 s 02 m 51 s 18 m 58 s 28 m 08 s 40 m 29 s 79 m 36 s

23 m 07 s 02 m 51 s 12 m 14 s 20 m 51 s 30 m 03 s 79 m 36 s
Table 14
Time spent using each interaction dimension. The time students spent using a certain interaction dimension, including mean, minimum and maximum values, median, and
interquartile ranges (Q1-Q3).

Mean Min Q1 Median Q3 Max

GF 11 m 38 s 00 m 29 s 05 m 21 s 10 m 00 s 16 m 59 s 35 m 36 s
Interaction G 02 m 49 s 00 m 04 s 00 m 45 s 01 m 49 s 04 m 30 s 11 m 52 s
dimension PF 21 m 13 s 02 m 31 s 08 m 32 s 18 m 20 s 30 m 05 s 79 m 36 s

P 12 m 15 s 00 m 01 s 00 m 29 s 07 m 18 s 19 m 33 s 45 m 20 s
Fig. 13. Task completion time and performance variations. Each point represents
the deviation of task completion time intervals from the average CAT score, with blue
indicating scores above average and red below. Horizontal lines represent the estimates’
confidence intervals.

Examining task completion times across age categories in Table 13,
we found that older students do not necessarily complete tasks faster,
contrary to expectations. Mean completion times generally increase
with age, indicating a possible connection between age and task du-
ration. However, this relationship is intricate, and interaction meth-
ods also play a crucial role. As shown in Fig. 3, older students use
more advanced artefacts with higher autonomy, likely contributing to
longer task resolution times. The 7–9 years age group, while employ-
ing interaction methods similar to those of the 3–6 years age group,
accomplishes tasks at a relatively quicker pace. This implies a level of
efficiency or adaptability within this age group, and the difference may
be influenced by the rapid developmental changes occurring between
these age groups.

In Table 14, the analysis of the times spent on specific interaction
dimensions reveals some clear patterns. Users spend less time on the
G interface, indicating lower preference or quicker navigation. On the
contrary, more time is spent on the PF interface, suggesting higher
preference or naturally longer interactions. The wider IQR indicates
variability in user engagement with this interface. Comparing inter-
faces, users spend less time on gesture interfaces (G) compared to
programming interfaces (P). Similarly, when relying on visual feedback,
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users spend less time with GF than with PF. This suggests that gesture-
based interactions may be more efficient or intuitive, leading to quicker
user engagement. Moreover, it appears users need more time when
they have less autonomy, especially when relying on visual feedback.
This could be due to the additional time required for students to
continuously monitor and adjust their actions in response to visual
feedback.

4.4.7. Student performance dynamics in virtual and unplugged settings
To understand the factors influencing student performance in both

unplugged and virtual settings, we combined the datasets to formulate
the final model (M4), defined in (4), aimed at assessing how the
domain impacts CAT scores, along with other contributing factors.
The difference form M3 is the inclusion of the variable domain as a
predictor of the CAT score.

𝙲𝙰𝚃_𝚂𝙲𝙾𝚁𝙴 =𝛽0 + 𝛽1 ⋅ 𝙳𝙾𝙼𝙰𝙸𝙽 + (𝛽2 + 𝛽3 ⋅ 𝚂𝙴𝚇 + 𝜖𝚂𝙴𝚇|𝚂𝙲𝙷𝙾𝙾𝙻)+

+ 𝑢𝚂𝚃𝚄𝙳𝙴𝙽𝚃 + 𝑢𝚂𝙴𝚂𝚂𝙸𝙾𝙽_𝙶𝚁𝙰𝙳𝙴 + 𝑢𝚂𝙲𝙷𝙴𝙼𝙰 + 𝜖.
(4)

Variations in student performance across different groups, including
individual students, session grades, schemas, and sex across schools,
align with patterns identified in the model (M3) on individual datasets.
Nevertheless, the model revealed that the domain effect on CAT scores
lacked statistical significance (𝑝 = 0.807), thereby strengthening the
coherence of these results across various settings. This underscores the
robustness of the conclusion, highlighting the significance of domain-
independent factors in shaping CAT scores.

The ANOVA results in Table 15 highlight that all factors – schema,
sex within schools, session grade, and individual student traits – sig-
nificantly influence CAT scores in both virtual and unplugged settings.

Table 15
Type III analysis of variance (ANOVA) table with Satterthwaite’s method on the
full dataset. Rows shaded in grey indicate statistically significant models.

AICa LRTb 𝒑c

7461.0
Schema 7761.2 302.16 <1e-15∗∗∗∗

Sexd 7470.7 13.64 0.001∗∗

Session-Grade 7463.0 3.96 0.046∗

Student 8003.2 544.16 <1e-15∗∗∗∗

∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001, ∗∗∗∗ 𝑝 < 0.0001
a Akaike Information Criterion for the model evaluated as −2 ⋅ (logLik− npar). Smaller
is better.
b LRT statistic; twice the difference in log-likelihood, which is asymptotically
chi-square distributed.
c 𝑝 value = 𝑃𝑟(> 𝜒2)
d Sex in (1 + Sex | School)

Comparing three models, M5 (reduced without the sex predictor),
M6 (sex as a fixed effect), and M4 (sex as a random slope within
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Table 16
LRT to evaluate the global effect of Sex on the full dataset. Comparison between
the reduced model (M5) without the sex predictor, the model (M6) that considers sex
a fixed effect, and the initial model (M4) that considers sex as a random slope within
schools. Rows shaded in grey indicate statistically significant models.

Model AICa 𝝌𝟐 𝒑b

M5 7472.2
M6 7473.6 0.631 0.4270
M4 7462.5 13.063 0.0003∗∗∗

∗ 𝑝 < 0.05, ∗∗ 𝑝 < 0.01, ∗∗∗ 𝑝 < 0.001, ∗∗∗∗ 𝑝 < 0.0001
Akaike Information Criterion for the model evaluated as −2 ⋅ (logLik− npar). Smaller

s better.
𝑝 value = 𝑃𝑟(> 𝜒2)

chools), we aimed to elucidate the role of sex in influencing CAT
cores across diverse domains. The likelihood ratio test (LRT) results
n Table 16 show that introducing sex as a fixed effect in M6 does
ot significantly improve the model compared to the baseline M5
𝑝 = 0.4270). However, the inclusion of sex as a random slope within
chools in M4 significantly enhances the model fit (𝑝 = 1𝑒 − 3∗∗∗),
mphasising that the impact of sex on CAT scores varies across different
chool environments. This underscores the importance of considering
he interaction between sex and the school context when assessing its
ffect on educational outcomes.

. Discussion and conclusion

In this section, we discuss the results to address our research ques-
ions. To do so, the discussion is structured into four subsections, each
resenting the findings related to each specific research question. This
s followed by the presentation of the limitations of the study, future
orks and recommendations.

.1. What are the baseline competencies in AT in compulsory education,
nd how do they develop across school grades?

.1.1. Contextual overview of findings
Our analysis reveals a clear developmental trajectory in algorithmic

hinking (AT) competencies with age across compulsory education.
ounger students predominantly employ trial-and-error (T&E) strate-
ies when encountering new concepts. As students advance in age and
ain experience and maturity, they gradually shift towards more sophis-
icated problem-solving techniques and reduced reliance on T&E meth-
ds. This progression reflects a maturation in both problem-solving
pproaches and conceptual understanding.

The observed shift from T&E strategies to more refined problem-
olving techniques suggests that as students develop, they become
etter equipped to handle complex algorithmic tasks. Younger students’
reference for T&E can be seen as a necessary stage in their cognitive
evelopment, where iterative attempts and experience play a crucial
ole in their learning process. Over time, with increased experience and
ognitive maturity, students can adopt more effective strategies that
eflect deeper conceptual understanding and enhanced AT.

Our findings align with existing research highlighting a devel-
pmental progression in AT and problem-solving approaches with
ge (Del Olmo-Muñoz et al., 2020; El-Hamamsy, Bruno, Audrin, Cheva-
ier, Avry, Zufferey, & Mondada, 2023; Kong & Lai, 2022; Román-
onzález et al., 2017; Vlachogianni & Tselios, 2021). Similar to pre-
ious studies, our results confirm that younger students rely more on
&E approaches, especially when solutions are not immediately clear,
nd that as they mature, their problem-solving techniques become
ore sophisticated (Chevalier, Giang, Piatti, & Mondada, 2020; Kanaki
Kalogiannakis, 2022; Tónnsen, 2021). However, our study extends

his understanding by detailing how the frequency of T&E behaviour
mpacts performance outcomes. While prior research has noted the
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hift from T&E to advanced strategies, our findings emphasise the
uanced role of T&E in both initial learning and subsequent algorithmic
ompetence. While excessive T&E can initially impede performance,
he process of iterative attempts can lead to improvement and adaptive
earning. However, relying solely on T&E without integrating reflective
hinking may hinder deeper conceptual understanding and the devel-
pment of accurate algorithms (Chevalier et al., 2020; Shute, Sun, &
sbell-Clarke, 2017). This adds depth to understanding how iterative
roblem-solving can influence learning trajectories.

.1.2. Implications
The developmental trajectory in AT competencies observed in our

nalysis underscores the importance of adapting instructional strategies
o the cognitive maturity of students. The shift from T&E approaches to
ore sophisticated problem-solving techniques implies that educators

hould recognise and support the evolving nature of students’ algo-
ithmic skills. Younger students’ reliance on T&E can be seen as an
ssential phase in their cognitive development, serving as a foundation
or more advanced problem-solving methods. This progression high-
ights the need for educational frameworks that foster iterative learning
hile gradually introducing more complex algorithms and strategies.
nderstanding that T&E plays a dual role, both as a necessary step

n learning and a potential barrier to advanced problem-solving, can
elp educators design curricula that balance exploration with reflective
hinking to enhance students’ overall algorithmic competence.

.2. How do characteristics specific to the assessment instrument, such as
ifferent interaction modalities used in unplugged and digital instructional
trategies, influence the development of AT skills in relation to sex, edu-
ational environment (e.g., school level and grade), and regional factors
e.g., the canton of the school)?

.2.1. Contextual overview of findings
mpact of interaction modalities on AT skills development. Our analysis

reveals significant variations in how different interaction modalities
impact AT skills across age groups. Younger students predominantly
engage with simpler artefacts and use T&E strategies. As they grow
older, they transition to more complex artefacts and show decreased
reliance on T&E, which indicates a developmental progression towards
more sophisticated problem-solving techniques. Interestingly, younger
learners can also effectively engage with complex artefacts, demon-
strating early development of advanced algorithmic skills. This finding
suggests that students can benefit from exposure to complex artefacts
and interactions even at a young age. This indicates the possibility
that advanced cognitive skills can develop earlier than traditionally
assumed.

Moreover, our results highlight that digital artefacts, due to their in-
teractive and immersive nature, may be more effective than unplugged
artefacts in fostering sophisticated AT skills, as observed with the
CAT. The dynamic and engaging environment of virtual tools provides
enhanced opportunities for algorithmic exploration and development,
thereby supporting advanced cognitive growth in young learners. How-
ever, it is important to note that these findings are specific to this
context and may not be applicable to all cases. Further research is
necessary to confirm their broader relevance.

These findings contribute to a deeper theoretical understanding of
how different interaction modalities influence cognitive development
in AT. Our results are consistent with those obtained in the previous
investigation on the unplugged CAT (Piatti et al., 2022) and sup-
port the literature indicating the rapid development of AT skills in
preschool-aged children (Dietz, Landay, & Gweon, 2019; Nikolopoulou
& Tsimperidis, 2023; Voronina et al., 2016; Vujičić, Jančec, & Mezak,
2021; Wahyuningsih, Nurjanah, Rasmani, Hafidah, Pudyaningtyas, &
Syamsuddin, 2020). This alignment with prior studies underscores the

notion that complex problem-solving abilities can emerge earlier than



G. Adorni et al. Computers in Human Behavior Reports 15 (2024) 100466 
previously thought (Georgiou & Angeli, 2021; Kanaki & Kalogiannakis,
2022; Sarama & Clements, 2009),

Our results extend these findings by showing that the effectiveness
of virtual artefacts in enhancing AT skills is even more pronounced
than previously documented for unplugged activities (Wohl, Porter,
& Clinch, 2015). The interactive and stimulating nature of virtual
environments provides a richer learning experience, which aligns with
theories emphasising the role of immersive learning environments in
cognitive development (Lui, Not, & Wong, 2023; Makransky & Petersen,
2021).

Sex differences in educational contexts. Our investigation into sex dif-
ferences in computer science (CS) education did not reveal a global
effect of sex on AT performance. However, it did uncover significant
interactions between artefact type, sex, and age, as well as variations
at the school level in shaping algorithmic complexity. Notably, we
observed that in virtual environments, simpler artefacts generally im-
pact algorithmic complexity less for males than for females, whereas
unplugged environments show no significant sex effect. Age moderates
these gender differences, with males aged 10 to 13 outperforming
females in unplugged settings but lagging in virtual ones. Moreover,
school performance data indicate variability in sex effects across differ-
ent institutions. Some show higher performance for males, while others
show better results for females.

These findings suggest that the impact of sex on AT performance
is multifaceted and shaped by multiple factors, including artefact type,
age, and school environment. This aligns with existing research that
explores how sex differences impact performance outcomes in CS edu-
cation (Ardito, Czerkawski, & Scollins, 2020; Kong & Lai, 2022; Mouza,
Pan, Yang, & Pollock, 2020; Plante, de la Sablonniére, Aronson, &
Théorêt, 2013; Sun, Hu, & Zhou, 2022). Notably, the literature un-
derscores the importance of early exposure to CS education and ef-
fective teacher preparation in mitigating gender gaps and enhancing
equity (El-Hamamsy et al., 2023). Gender differences from a young
age also contribute to performance disparities, highlighting the need for
targeted interventions and supportive educational environments (Mas-
ter, Meltzoff, & Cheryan, 2021). Moreover, school-specific factors such
as pedagogical methods, institutional culture, and student cohort dy-
namics play a significant role in these variations, highlighting the
complex interplay between these elements in shaping student per-
formance (Rachmatullah, Vandenberg, & Wiebe, 2022; Wang & He-
jazi Moghadam, 2017). Research emphasises that the quality of in-
struction, classroom management, and local educational practices are
crucial in shaping student outcomes (El-Hamamsy et al., 2023; Wang,
Guo, & Degol, 2019). These insights are consistent with findings that
highlight the importance of considering local contexts in educational
policies and practices, as academic achievements can vary significantly
across different cultures and regions (Wang et al., 2019).

Diversity and individual differences. The wide range of performances
highlights the individual differences influenced by personal abilities,
learning preferences, and external circumstances. This diversity under-
scores the necessity for creating equitable learning environments that
accommodate various needs and learning styles. Addressing these dif-
ferences is crucial for ensuring that every student has the opportunity
to succeed and develop their AT skills fully.

The recognition of individual differences and their impact on learn-
ing outcomes supports the growing body of literature advocating for
personalised and adaptive educational approaches. This perspective
aligns with research suggesting that personalised instruction tailored
to individual needs and characteristics can enhance learning experi-
ences (Desmarais & Baker, 2011; Hooshyar, Ahmad, Yousefi, Fathi,
Horng, & Lim, 2016; Millán, Pérez-de-la Cruz, & Suárez, 2000; Mousav-
inasab, Zarifsanaiey, Niaka Kalhori, Rakhshan, Keikha, & Ghaz. Saeedi,
2018; Soofi & Uddin, 2019; Vomlel, 2004). By adapting educational
practices to address diverse learning preferences and abilities, educa-
tors can create more inclusive and supportive environments that foster

success for all students.
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5.2.2. Implications
The findings from our analysis underscore the significant impact

that different interaction modalities and factors such as sex, educational
environment (including school level and grade), and regional context
have on the development of AT skills.

Our results suggest that virtual artefacts can be more effective
than unplugged ones in fostering sophisticated AT skills. This implies
that educators and policymakers might consider integrating more in-
teractive and immersive technologies into the curriculum to enhance
cognitive development. However, it is important to balance this in-
tegration with considerations about screen time and its implications
for young learners. For instance, while digital platforms can enhance
learning by providing early exposure to computational concepts, exces-
sive screen time has been linked to several potential issues. Excessive
screen time can negatively affect cognitive development, executive
functioning, and social-emotional skills, leading to issues like reduced
academic performance, impaired language development, and increased
risks of obesity and mental health problems (Muppalla, Vuppalapati,
Redd. Pulliahgaru, & Sreenivasulu, 2023; Ponti, 2023; Swider-Cios,
Vermeij, & Sitskoorn, 2023). To mitigate these risks, it is crucial to
set reasonable limits on screen time and promote a balanced ap-
proach. The benefits of digital tools in early education must be weighed
against these potential risks. By integrating interactive and immersive
technologies thoughtfully, and balancing screen time with other de-
velopmental activities, we can support young learners’ AT skills while
promoting their overall well-being and healthy development.

Additionally, the observed variability in performance based on sex,
age, and school environment highlights the need for nuanced educa-
tional strategies. Addressing these variations is crucial for mitigating
biases and ensuring equitable access to resources. Creating inclusive
and adaptive learning environments that cater to diverse needs and
learning styles is key to supporting all students effectively.

5.3. Future directions and recommendations

To foster equitable learning environments, several key strategies
should be implemented. First, curricula should integrate both ex-
ploratory and reflective learning opportunities. Curricula and learning
experiences should be designed to accommodate diverse learning styles
and preferences. Offering a variety of instructional materials and meth-
ods, such as virtual and unplugged activities, ensures that all students
have access to resources that align with their individual learning
needs. This involves developing age-appropriate instructional strategies
that start with T&E methods and gradually introduce more structured
problem-solving techniques. For younger students, the focus should
be on iterative attempts and experiential learning, with more formal
algorithmic concepts introduced as their cognitive abilities mature.
Alongside T&E methods, incorporating activities that promote reflec-
tive thinking can help students analyse their iterative attempts, identify
patterns, and evaluate alternative strategies, bridging the gap between
basic problem-solving and more advanced techniques.

Instructional strategies must also be differentiated to accommodate
variations in sex, age, and educational contexts, addressing specific
needs and minimising biases. Adapting educational practices to lo-
cal contexts and continuously assessing their effectiveness can help
create more equitable learning environments. Additionally, future re-
search should investigate how students’ self-perception, interest, and
motivation impact their performance in AT. Existing literature has
established a strong link between high student engagement and a
positive perception of the learning environment with increased aca-
demic success (Bellino & Herskovic, 2023; El-Hamamsy et al., 2023;
Hinckle, Rachmatullah, Mott, Boyer, Lester, & Wiebe, 2020; Olivier,
Archambault, D. Clercq, & Galand, 2018; Rachmatullah et al., 2022;
Sun et al., 2022; Tai, Ryoo, Skeeles-Worley, Dabney, Almarode, &
Maltese, 2022). Understanding these factors can provide insights into



G. Adorni et al. Computers in Human Behavior Reports 15 (2024) 100466 
how students’ attitudes and internal perceptions influence their en-
gagement and achievement, further informing tailored instructional
strategies (Beyer, 2014; Guran, Cojocar, & Turian, 2020; Kong, Chiu,
& Lai, 2018; Master et al., 2021; Olivier et al., 2018; Sevin & Decamp,
2016; Wang, Dai, & Mathis, 2022).

Educators play a crucial role in this process and should receive
training on the developmental stages of AT and effective instructional
practices tailored to each stage. This professional development should
also include strategies for adapting teaching methods based on students’
backgrounds to create inclusive learning environments. Additionally,
formative assessments should monitor students’ progress and adapt
teaching methods accordingly, ensuring that instructional practices
address individual learning needs and support effective transitions from
T&E to advanced techniques.

Virtual artefacts and interactive tools are vital in providing dynamic
and engaging learning experiences, particularly for younger students.
These technologies can significantly enhance cognitive growth and
algorithmic skills.

Lastly, while our study did not specifically explore the practi-
cal implementation of personalised instruction based on AT skills in
real-world classrooms, we can propose methods for integrating these
findings into everyday educational settings. Recognising that a uniform
approach may not be effective for all students highlights the impor-
tance of tailoring instruction to individual needs and characteristics.
Intelligent Tutoring and Assessment Systems (ITAS) can play a key role
here (Rodriguez-Barrios, Melendez-Armenta, Garcia-Aburto, Lavoignet-
Ruiz, Sandoval-Herazo, Molina-Navarro, & Morales-Rosales, 2021; Wu,
2019; Xing et al., 2020). These adaptive systems that suggest tasks
aligned with students’ proficiency levels and provide automatic tutor-
ing mechanisms can further enhance learning experiences (Millán et al.,
2000; Soofi & Uddin, 2019; Vomlel, 2004). By offering recommenda-
tions for different artefacts or visual feedback, these systems support
individualised instruction and contribute to a more equitable educa-
tional system, ensuring that all students have the opportunity to suc-
ceed (Desmarais & Baker, 2011; Hooshyar et al., 2016; Mousavinasab
et al., 2018).

In this context, an attempt was made to build an Intelligent Assess-
ment System (IAS) for the unplugged CAT using Bayesian networks,
without incorporating tutoring features. Bayesian networks represent a
promising future direction for assessment due to their ability to offer
detailed, probabilistic evaluations of students’ skills, as opposed to cur-
rent methods that provide a single score per student-task (Antonucci,
Mangili, Bonesana, & Adorni, 2022), allowing for a comprehensive
learner model based on posterior probabilities. This approach, vali-
dated in two studies (Adorni, Mangili, Piatti, Bonesana, & Antonucci,
2023a; Mangili, Adorni, Piatti, Bonesana, & Antonucci, 2022), can be
adapted to the virtual CAT environment, offering a more nuanced way
of assessing students. Integrating tutoring capabilities into this Bayesian
network-based IAS could evolve it into a fully-fledged ITAS, delivering
real-time, adaptive support for students. Future research should focus
on refining these models, integrating them into virtual CAT assess-
ment tools, and incorporating tutoring functionalities to enhance their
effectiveness and scalability in diverse educational contexts.

5.4. Limitations

In this section, we address the study’s potential limitations, dis-
cussing how we have attempted to mitigate some of these challenges
and acknowledging the limitations that remain unresolved.

One significant limitation is the exclusive use of the CAT as the sole
assessment instrument. This approach restricts the ability to benchmark
the CAT’s effectiveness against alternative measures of AT without com-
paring it to other validated assessment tools. Future research should
incorporate additional AT assessment tools to provide a broader per-
spective and validate the results obtained with the CAT to enhance

the robustness of the findings. Comparing outcomes from different
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assessment methods could offer a more comprehensive understanding
of AT development.

A possible limitation of the study is the variability in implementing
instructional strategies, particularly the differences in administering
tutorials across various linguistic regions within Switzerland. This in-
consistency may have influenced the effectiveness and comparabil-
ity of the outcomes. For example, differences in how tutorials were
administered by different administrators in the Italian-speaking and
German-speaking regions could have introduced variations in the de-
livery of instructional materials and the administration of the CAT,
potentially impacting the study’s results. To address this issue, we have
proactively redesigned the training modules to standardise the adminis-
tration method. We developed an in-app video tutorial system to allow
users to navigate the platform independently, thus reducing potential
biases from varying researcher explanations. While this enhancement
has been integrated into the system, it has not yet been tested in
practice. Future research will benefit from evaluating this standardised
approach to ensure a consistent experience for all participants and
improve the reliability of the results.

Another possible limitation of the study is the potential lack of
socio-economic diversity within the sample, which may affect the
unreliability of the findings. Although we aimed to include a diverse
sample by balancing factors such as sex, age, educational environment
(e.g., school level and grade), and regional factors (e.g., the canton of
the school), we did not specifically investigate socio-economic factors
like parental income or education. The non-random selection process,
where schools and classes were recruited through agreements with
school directors and teachers, might have introduced selection bias.
Additionally, the limited sample size constrains our ability to generalise
the results to a broader population.

Furthermore, the study did not account for the extent of students’
prior digital education, which could significantly influence their per-
formance on the assessment. Previous exposure to digital learning tools
and environments may affect students’ familiarity with the technology
used in the study, potentially impacting their ability to engage with
and benefit from the instructional strategies tested. Without considering
this variable, the findings may not fully capture the interplay between
prior digital experience and AT development. This oversight could limit
the understanding of how previous digital education affects students’
performance and the effectiveness of the proposed instructional meth-
ods. Future research should address this by collecting data on students’
prior digital education and exploring its impact on learning outcomes
to provide a more comprehensive view of how previous experiences
shape AT development.

Despite these limitations, we believe the findings are relevant be-
yond the Swiss context. The diverse nature of the sample, which
included students from various geographic and linguistic regions within
Switzerland, and the absence of specific characteristics that would
make these classes unusually different from those in highly educated
countries suggest that the results may apply to other educational en-
vironments and cultural settings. Nevertheless, future research should
continue exploring these findings’ applicability in different contexts to
confirm their broader relevance.

Finally, a potential limitation of the study is related to techno-
logical access and resource availability. Although we ensured that all
participants had access to the necessary technology for this study, real-
world implementation might face constraints due to varying levels of
technological access and resource availability in different educational
settings. Differences in the quality of technology and resources could
influence the effectiveness of virtual artefacts and interactive tools
beyond the controlled environment of the study. To address this, future
research should investigate how varying levels of technological support
and resource constraints impact the implementation and effectiveness
of educational interventions, ensuring that findings apply to a broader

range of educational contexts.
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Software availability

The software components used in this study are open-source –
virtual CAT platform (Adorni, Piatti, & Karpenko, 2023b), virtual CAT
programming language interpreter (Adorni & Karpenko, 2023c), virtual
CAT data infrastructure (Adorni & Karpenko, 2023d) –, as is the code
to reproduce the results (Adorni, 2024b).
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Appendix A

See Figs. A.1–A.3.
Fig. A.1. Sequence of CAT schemas. The 12 schemas proposed in the task, named from Schema 1 to Schema 12, are characterised by unique visual regularities and complexities,
varying in elements such as colours, symmetries, alternations and other distinctive features.
Source: Adapted from Piatti et al. (2022).
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Fig. A.2. Example of usage of the CAT-VPI with textual commands.

Fig. A.3. Example of usage of the CAT-GI.
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